GEOGRAPHIC DISTRIBUTION

Herpetological Review publishes brief notices of new geographic distribution records in order to make them available to the herpetological community in published form. Geographic distribution records are important to biologists in that they allow for a more precise determination of a species’ range, and thereby permit a more significant interpretation of its biology.

These geographic distribution records will be accepted in a standard format only, and all authors must adhere to that format, as follows: **SCIENTIFIC NAME, STANDARD ENGLISH NAME if available** (for the United States and Canada as it appears in Crother [ed.] 2012. _Scientific and Standard English Names of Amphibians and Reptiles of North America North of Mexico, with Comments Regarding Confidence in Our Understanding_. 7th ed. Herpetol. Rev. 39:1–92 [available from ssarbooks.com], for Mexico as it appears in Liner and Casas-Andreu 2008. _Standard Spanish, English and Scientific Names of the Amphibians and Reptiles of Mexico_. Herpetol. Circ. 38:1–162), **LOCALITY** (use metric for distances and give precise locality data, including lat/long coordinates in decimal degrees and cite the map datum used), **DATE** (day-month-year), **COLLECTOR**, **VERIFIED BY** (cannot be verified by an author; curator at an institutional collection is preferred), **PLACE OF DEPOSITION** (where applicable, use standardized collection designations as they appear in Sabaj Pérez [ed.]. 2013, _Standard Symbolic Codes for Institutional Resource Collections in Herpetology and Ichthyology: an Online Reference_, ver. 4.0, available at http://www.asih.org/) and **CATALOG NUMBER** (required), **COMMENTS** (brief), **CITATIONS** (brief and must be deposited in a university or museum collection along with complete locality data, and the photographic catalog number(s) must be included in the same manner as a preserved record. Before you submit a manuscript to us, check Censky (1988, _Index to Geographic Distribution Records in Herpetological Review: 1967–1986_; available from the SSAR Publications Secretary), subsequent issues of _Herpetological Review_; and other sources to make sure you are not duplicating a previously published record. The responsibility for checking literature for previously documented range extensions lies with authors. _Do not submit range extensions unless a thorough literature review has been completed_.

For reports concerning _introduced species_, it is important to note whether a population has become established or if the report represents an isolated occurrence, such as a released captive. Additionally, it will be helpful to include any information that establishes a timeline for the introduction, such as date of first observation.

Please submit any geographic distribution records in the standard format only to one of the Section Co-editors: David C. Blackburn (Africa and Europe), Indranell Das (Asia, Australasia, South Pacific), Jerry D. Johnson (Mexico and Central America, including the Caribbean Basin), Alan M. Richmond (USA & Canada), or Gustavo J. Scrocchi (South America). Short manuscripts are discouraged, and are only acceptable when data cannot be presented adequately in the standard format. Electronic submission of manuscripts is required (as Microsoft Word or Rich Text format [rtf] files, as e-mail attachments). Refer to inside front cover for e-mail addresses of section editors. A template for preparation of geographic distribution notes is available online at: http://ssarherps.org/wp-content/uploads/2014/07/GeoDistNotes_FormattingGuidelines.pdf.

Until the discovery of the records reported herein, *Aneides aeneus* was known to occur only in the widely separated Blue Ridge and Cumberland Plateau physiographic provinces of Georgia (Elliott 2008, *op. cit.*). While conducting general biological and ecological inventories on Rocky Mountain two of us (BT and NT) encountered green salamanders in crevices of both cliff and boulder sandstone outcroppings. Rocky Mountain is in the Ridge and Valley physiographic province and far removed from the Cumberland Plateau to the northwest and the Blue Ridge to the northeast. This discovery spawned further searches for this species on other Georgia mountains within this province resulting in the additional Ridge and Valley records documented above. Ridge and Valley records do not exist from adjacent Alabama, but a record from Grainger County, Tennessee ca. 210 km north of the John’s Mountain site in Georgia represents the nearest previously known Ridge and Valley record (Redmond and Scott 1996. Atlas of Amphibians in Tennessee. Misc. Publ. No. 12, Austin Peay State University. 94 pp.). These records suggest that the species may be more widespread in the southern portion of the Ridge and Valley and surveys in appropriate habitats within this province in Alabama and southern Tennessee are warranted.

BRETT TYLER, Georgia Department of Natural Resources, Game Management Section, 2592 Floyd Springs Road, Armuchee, Georgia 30105, USA; **NATE THOMAS, MATT J. ELLIOTT**, and **JOHN B. JENSEN**, Georgia Department of Natural Resources, Nongame Conservation Section, 116 Rum Creek Drive, Forsyth, Georgia 31029, USA (e-mail: john.jensen@gadnr.org).

HEMIDACTYLUM SCUTATUM *(Four-toed Salamander)*. USA: **NORTH CAROLINA**: McDowell Co.; Box Creek Wilderness, Vein Mountain Tract (35.5560°N, 81.9639°W, WGS 84). ~330 m elev. 24 March 2014. Christopher R. Wilson. Verified by Jeffrey C. Beane. North Carolina Museum of Natural Sciences (NCSM photographic voucher CRW 14-3). Two additional animals were found in the Box Creek Wilderness, Yonguskas Tract (NCSM photographic voucher CRW 14-4) and Thompson Tract (no voucher). New county records (Jeffrey C. Beane, NC State Museum of Natural Sciences, pers. comm.). All animals were females found tending egg clutches under moss at the edge of small temporary pools within forested seepage areas along drainages. These properties are owned by 130 of Chatham LLC, a private land conservation company.

CHRISTOPHER R. WILSON, Unique Places LLC, 9 Bradford Pl, Henders onsville, North Carolina 28791, USA; e-mail: critterfro@gmail.com.

KELSEY HORNUNG, Texas Natural History Collections, The University of Texas at Austin, 10100 Burnet Road, PRC 176/R4000, Austin, Texas 78758-4445, USA; e-mail: kelshorn@yahoo.com.

Ethan J. Kessler, Illinois Natural History Survey, Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Illinois, USA; e-mail: ekessler2@illinois.edu.

Incilius (= Bufo) Nebulifer (Gulf Coast Toad). USA: Texas: Erath Co.: Tarleton State University, Stephenville, Texas (32.216621°N, 98.220934°W; WGS 84), 18 September 2014. Jacob D. Owen and Colt Hamilton. Verified by Carl Franklin. Amphibian and Reptile Diversity Research Center (UTA A-63146). New county record (Dixon 2013. Amphibians and Reptiles of Texas: with Keys, Taxonomic Synopses, Bibliography, and Distribution Maps. Texas A&M University Press, College Station, Texas. 447 pp.). Individual (16.4 g) found on Tarleton State University grounds at 0615 h on concrete sidewalk after a rainstorm. Specimen was collected under a Texas Parks and Wildlife Hunting Permit issued to Jacob D. Owen (#77640018849).

Jacob D. Owen (e-mail: jacob.owen@go.tarleton.edu) and **Colt Hamilton**, Department of Biological Sciences, Tarleton State University, Box T-0100, Stephenville, Texas 76402, USA (e-mail: gamingninjaya@ymail.com).

Incilius Occidentalis (Pine Toad). México: Hidalgo: Municipality of Metztitlán: Reserva de la Biosfera Barranca de Metztitlán near Acametlán (20.46984°N, 98.67137°W; WGS 84), 1306 m elev. 8 October 2011. René Flores Vargas. Verified by Irene Goyenechea. Colección Herpetológica Fotográfica, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo (CHI-CIB 04, photo voucher). First municipality record and first record for Reserva de la Biosfera Barranca de Metztitlán. This specimen represents a range extension of 35.57 km NW from closest known, but unnamed locality in the Municipality of Agua Blanca de Iturbe (Ramírez-Bautista et al. 2010. Lista Anotada de los Anfibios y Reptiles del Estado de Hidalgo, Mexico. Univ. Autón. Est. de Hidalgo, CONABIO. 104 pp.). The toad was found in the morning under a rock on the bank of Río Venados, surrounded by desert scrub habitat.

Leonardo Fernández Badillo (e-mail: cyrtopsis@hotmail.com), and **René Flores Vargas**, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, km 4.5 carr. Pachuca-Tulancingo, Mineral de la Reforma, Hidalgo, México.

Phrynobatrachus Ogoensis (Ogooué River Frog). Gabon: Ogooué-Ivindo Province: Buffer Zone of Lopé National Park, Ramba Village (00.3635°S, 11.7872°E; WGS 84), 220 m elev. 6 June 2013. J. G. Larson. Verified by J. Rosado. Museum of Comparative Zoology (MCZ A-149217). Identification was made via comparison to the original species description (Boulenger 1906. Annali del Museo Civico di Storia Naturale di Genova. Serie 3, 2:157–172) and a toptype (MCZ A-14831). Mitochondrial data from 16S ribosomal DNA (GenBank Accession KP247505), the first genetic data for this species, was compared to all other known species of Phrynobatrachus for which comparable genetic data exist and was at minimum 6.19% divergent. This is the first record of this species outside of the type locality "Lambarene, Ogowe," in west-central Gabon, extending the known range approximately 175 km E. It is also the first record of this species in the vicinity of a protected area of Gabon, suggesting that this species is also found within the Lopé National Park boundaries. A single gravid female was collected from leaf litter in secondary forest. The specimen was collected under permits from Centre National de la Recherche Scientifique et Technologique (CENAREST; AR0013/13), Agence Nationale des Parcs Nationaux (ANPN; AE130014) and Direction de la Faune et de la Chasse (82/DGFAP).

Joanna G. Larson, Department of Ecology and Evolutionary Biology, Museum of Zoology (UMMZ), University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109, USA (e-mail: jglarson@umich.edu); **Breda M. Zimkus**, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA (e-mail: bzmikus@oeb.harvard.edu).

Jaqueiuto S. Jorge (e-mail: queito@yahoo.com.br) and **Eliza M. X. Freire**, Laboratório de Herpetologia, Departamento de Botânica e Zoolo- gia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, CEP 59072-970, Natal, Rio Grande do Norte, Brazil; **Marcelo N. de C. Kukubum**, Laboratório de Herpetologia, Unidade Acadêmica de Ciências Biológicas e Programa de Pós-graduação em Ciências Florestais/CFSTIR, Universidade Federal de Campina Grande, CEP 58704-300, Patos, Paraíba, Brazil (e-mail: mnckukubum@gmail.com).

Pipa Pipa (Surinam Toad). Brazil: Ceará: Municipality of Fortaleza: Açude Itarepi (3.791714°S, 38.554821°W; WGS 84). 20 January 2014. K. S. Serra. Verified by P.S. Bernarde. Coleção Herpetológica da Universidade Federal do Ceará, Fortaleza, Ceará, Brazil (CHUFC A 6749). This species was previously known from basins of Amazónian biome (Suriname, Guyana, Venezuela, Colombia, Ecuador, Peru, Bolivia and Brazilian Amazon) and the states of Mato Grosso and Goiás in Brazil (Alves-Pinto et al. 2014).
aligns more closely to *C. p. picta*. This specimen also represents the first record for *C. dorsalis* occurring below the Fall Line from the Chattahoochee drainage (Cowkeee Creek). Adult female (126 cm carapace length, straight line) caught in baited ProMar collapsible funnel trap. Specimen was collected under AL General Scientific Collecting Permit #2014063841460680 issued to RDB.

ROGER D. BIRKHEAD, COSAM Outreach, Alabama Science In Motion, Auburn University, Alabama 36849-5414, USA (e-mail: birkhrd@auburn.edu); CHELSEA K. WARD, Department of Biological Sciences, Auburn University Montgomery, PO Box 244023, Montgomery, Alabama 36124-4023, USA.

WILLIAM H. MERTZ, Ave La Playa, Toncones, La Unión, Guerrero, México 39270 (e-mail: hunter_mx1@yahoo.com); JACOBO REYES-VELASCO, Department of Biology, University of Texas at Arlington, 501 S. Nedderman Drive, 337 Life Science, Arlington, Texas 76010, USA (e-mail: jacobocrocotalus.com); CHRISTOPH I. GRÜNWALD, Chapalajara Real Estate, Carret-era Oriente 57-1, “Añijc Plaza” Añijic, Jalisco, México (e-mail: cgruenwald@switaki.com).

SQUAMATA — LIZARDS

ASPIDOSCELIS SEXLINEATA (*Six-lined Racerunner*). USA: ALABAMA: BULLOCK CO.: Wehe Forever Wild Tract, 6.4 km SE of AL Hwy 51 and Bullcock CR 47 (Pleasant Hill Road) intersection (32.03176°N, 85.46720°W; WGS 84), 27 April 2014. J. Trent and E. Soehren. Verified by David Laurencio. Auburn University Museum of Natural History (AUM AHAP-D 857, digital photo voucher). New county record (Mount 1975. The Reptiles and Amphibians of Alabama. Agricultural Experiment Station, Auburn University, Alabama. 347 pp.). Male incidentally captured in permanent snake box trap placed within fire-maintained open pine sandy upland characterized by diverse herbaceous ground cover. Specimen photographed and released. Record fills gap within all surrounding counties in the eastern portion of the upper Coastal Plain region (Mount 1975, op. cit.) and was vetted through examination of online museum holdings (VertNet, HerpNet) and literature review.

JOHN A. TRENT (e-mail: john.trent@dcnr.alabama.gov) and ERIC C. SOEHREN, El Hew Field Station, Wehe Land Conservation Center, State Lands Division, Alabama Department of Conservation and Natural Resources, 4819 Pleasant Hill Road, Midway, Alabama 36053, USA (e-mail: eric.soehren@dcnr.alabama.gov).

CNEMIDOPHORUS CRYPTUS. BRAZIL: ESPÍRITO SANTO: MUNICIPALITY OF VIANA: 900 m W of Viana, SW of BR 262 (20.388611°S,
H. turcicus were found within centimeters of each other using the same retreats (cracks in a cinder block wall). At the latter site, the two species were found in the same urban habitat (structures adjacent to a hedge row) ca. 25 m apart. Although the divergent diet activity periods likely reduce competition between these two species for some resources, these observations suggest they may compete for retreat space, at least in urban habitats. Their close proximity and co-occupation of retreats may also increase the chances for parasite and pathogen transmission. Specimens were collected under California Department of Fish and Wildlife Scientific Collecting Permit #SC4307.

GREGORY B. PAULY, Section of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, California 90007, USA (e-mail: gpauly@nhm.org); AARON WELLS, 22918 Leonara Drive, Woodland Hills, California 91367, USA; MAXWELL H. ESPINOZA, 18942 Leadwell Street, Reseda, California 91335, USA; THOMAS A. WAKE, The Cotsen Institute of Archaeology and Department of Anthropology, University of California, Los Angeles, California 90095-1510, USA; ROBERT E. ESPINOZA, Department of Biology, California State University, Northridge, Northridge, California 91330-8303, USA (e-mail: robert.espinosa@csun.edu).

HEMIDACTYLUS TURCICUS (Mediterranean House Gecko). USA: CALIFORNIA: VENTURA CO.: Simi Valley, along N bank of Arroyo Simi, at confluence with Bus Canyon Drain, ca. 125 m N of intersection of Los Angeles Avenue and 5th Street (34.272817°N, 118.783861°W; WGS 84), 225 m elev. 3 October 2014. Christian Huntley. Verified by Neftali Camacho. Natural History Museum of Los Angeles County (LACM PC 1852). New county record extending the range of this species ca. 16.6 km W (airline) from the closest vouchedered localities in Chatsworth, San Fernando Valley, Los Angeles County (Bernstein and Bernstein 2013. Herpetol. Rev. 44:474). Two adults were uncovered from deep (ca. 30 cm) leaf litter by day along the concrete-channeled stream terrace. A second, larger population (LACM 185981–185994) was also found.

Vouchedered specimens include six adult females, four adult males, and four juveniles. These geckos were collected at night (2110–2300 h) from a commercial district along the exterior walls of concrete, stucco, or stone buildings, and along stone or brick retaining walls ca. 0–2 m off the ground. Most collection sites were illuminated by light fixtures attached to buildings and had minimal landscaping. The presence of adults and juveniles across a broad area suggests that this is an established population. Specimens were collected under California Department of Fish and Wildlife Scientific Collecting Permit #SC4307.

GILLIAN C. LARSON (e-mail: gillian.larson.102@my.csun.edu), TANJA WOLFMEYER, (e-mail: tanja.wolfmeyer.415@my.csun.edu), BENJAMIN SINGH, (e-mail: benjamin.singh.623@my.csun.edu), and ROBERT E. ESPINOZA, Department of Biology, California State University, Northridge, Northridge, California 91330-8303, USA (e-mail: robert.espinosa@csun.edu); CHRISTIAN HUNTLEY, Aspen Environmental Group, 5020 Chesebro Road, Suite 200, Agoura Hills, California 91301, USA (e-mail: chuntley@aspeneg.com); GREGORY B. PAULY, Section of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, California 90007, USA (e-mail: gpauly@nhm.org).

Echternacht. First vouchered record for Knox Co. Previously, an unverified observation of a single juvenile was made in Knoxville ca. 2.4 km E of the current location on 10 October 2012. The nearest previously verified record was made in Maryville, Tennessee ca. 24 km southwest of the current location on 17 August 2013 (Nordberg et al. 2013. J. Tennessee Acad. Sci. 88:64–66).

A total of 13 adult (3.8–5.5 cm SVL) specimens (6 males, 7 females) including one gravid female were observed from ca. 0030–0130 h suggesting the presence of an established population. Additional individuals have been observed at this location since the date of collection. Due to the close proximity of these individuals to a commercial distribution facility and a small garden, individuals may have arrived on shipping pallets and/or potted plants. The commercial distribution facility may also facilitate the dispersal of this species to new localities within and beyond the Knoxville. Voucher specimens collected under a permit issued by the Tennessee Wildlife Resources Agency (#3812).

CHASE L. HIVELY, Department of Natural and Behavioral Sciences, Pellissippi State Community College, Knoxville, Tennessee 37933, USA; e-mail: chively@pstcc.edu.

IGUANA IGUANA (Green Iguana). MÉXICO: SINALOA: MUNICIPALITY OF AHOMES: San Miguel Zapatitlán, 5.8 km W of San Miguel Zapatitlán, 12.5 km N of Los Mohis (25.930472°N, 108.9991694°W; WGS 84), 17 m elev. 27 February 2013. Pedro Uriarte- Garzón. Verified by Adriana González-Hernández. Colección Nacional de Anfibios y Reptiles, Instituto de Biología, Herpetología—Referencia Fotográfica at Universidad Nacional Autónoma de México (CNAR IBH-RF 074 a–c, photo voucher). First municipality record, extending the known distribution 219 km airline N from the nearest known record at Costa Rica, Sinaloa, México (Smith 1958). The iguana was found in a tree (Populus mexicana) within riparian vegetation on the edge of Río Fuerte.

PEDRO URIARTE-GARZÓN (e-mail: uriartegp@hotmail.com) and VICTOR HUGO-REYNOSO, Colección Nacional de Anfibios y Reptiles, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, D.F., C.P. 04510, México.

TIMOTHY R. BURKHARDT, 10150 West Rudasill Road, Tucson, Arizona 85743, USA (e-mail: triprionco@aol.com); SCOTT TRAGESER, 12525 East Arbor Vista Boulevard, Tucson, Arizona 85749, USA (e-mail: trageser.scott@gmail.com).

SQUAMATA — SNAKES

ARIZONA ELEGANS (Glossy Snake). USA: NEW MEXICO: LOS ALAMOS CO.: DOE property; Pajarito Road, 2.25 mi W jet Pajarito Road and NM Hwy 4 (35.83603°N, 106.25773°W; WGS 84). 1 October 2014. Chuck Hatchcock. Verified by Tom Germakovski.
Museum of Southwestern Biology (MSB 95428). New county record (Degenhardt et al. 1996. Amphibians and Reptiles of New Mexico. University of New Mexico Press, Albuquerque, New Mexico. 431 pp.). Adult male DOR. Specimen was collected ca. 20 air mi NW of the nearest known locality.

CHUCK HATCHOCK, Los Alamos, New Mexico, USA (e-mail: chuck-hatchcock89@gmail.com); **CHARLES W. PAINTER**, 707 Griegos Road NW, Albuquerque, New Mexico 87107, USA (e-mail: cwpainter49@gmail.com).

ARIZONA ELEGANS (Glossy Snake). USA: TEXAS: **PARKER Co.**: Soda Springs Road approximately 0.6 road mi. N of the I-20 frontage road (32.67349°N, 98.03989°E; WGS 84). 21 September 2014. E. Wostl, C. Roelke, and M. Fontenot. Verified by Carl Franklin. Amphibian and Reptile Diversity Research Center (UTA-R 62069). New county record (Dixon 2013. Amphibians and Reptiles of Texas: with Keys, Taxonomic Synopsis, Bibliography, and Distribution Maps. Texas A&M University Press, College Station, Texas. 447 pp.). This locality is between the published ranges of the two recognized subspecies in the region. *Arizona e. elegans* is documented to the north and west and *A. e. arenicolor* has been documented to the east and south.

ELIJAH WOSTL (e-mail: ewostl@uta.edu) and **COREY E. ROELKE**, University of Texas at Arlington, Department of Biology, Box 19498, Arlington, Texas 76019, USA; **MALLORY L. FONTENOT**, 1315 West Abram Street, Arlington, Texas 76013, USA.

BOIGA IRREGULARIS (Brown Treesnake). USA: COMMON-WEALTH OF THE NORTHERN MARIANA ISLANDS: Rota: Rota Seaport (14.136502°N, 145.13531°E; WGS84). 3 September 2014. Shelwyn Taasacan, Robert Ulloa. Verified by G. Zug. USNM 581745. Snake (42 g, 810 mm SVL, 1020 mm total length) captured in a mouse-baited trap hung on the fence perimeter of the Rota Seaport. Because the Northern Marianas Islands are historically snake-free, these traps are used around ports and airports for early detection of snakes that may stow away in vessels or aircraft from Guam (60 km to the south), possibly evading quarantine detections. Necropsy revealed no prey items in stomach or gastrointestinal tract. Dissection at USNM confirmed the snake was female. To our knowledge, this is the first incursion of a live *Boiga irregularis* on Rota. Brown Treesnares previously observed on the island (N = 3) arrived in cargo already dead. The USGS Brown Treesnake Rapid Response Team mobilized 4 September–20 October 2014 to search the focal and surrounding areas for evidence of a possible incipient population; no additional snakes were found during this search effort.

ADAM KNOX (e-mail: aknox@usgs.gov), **ELDEN HOLLDORF**, **ROBERT N. REED**, U.S. Geological Survey, 2150 Centre Ave Bldg C, Fort Collins, Colorado 80526, USA; **SYLVAN IGISOMAR**, US Fish & Wildlife Service, CNMI, USA; **STEVE W. GOTTE**, USGS Patuxent Wildlife Research Center-National Museum of Natural History, 4210 Silver Hill Rd, Suitland, Maryland 20746, USA.

ARIZONA: **HULEA COUNTY**: State Route 3041 approximately 0.1 mile S of the I-10 (31.52131°N, 109.86427°W; WGS 84). 28 October 2014. Z. R. Mocarski. Verified by George Bradley. University of Texas at Austin, 10100 Burnet Road, PRC 176/R4000, Austin, Texas 78758-4445, USA; e-mail: keithorn@yahoo.com.

CROTALUS CERBERUS (Arizona Black Rattlesnake). USA: ARIZONA: **MOHAVE Co.**: Cerbat Mountains ca. 1.2 km SE of Cherum Peak (35.395166°N, 114.125314°W; WGS 84). 1905 m elev. 5 July 2014. Z. R. Mocarski.Verified by George Bradley. University of Arizona (UAM 57610-PSV, photo voucher). This specimen represents the first vouchered report from the Cerbat Mountains. Previously, this species was known from this range only from unconfirmed reports (Jones et al. 1985. Oecologia 66:595–601). This specimen represents a ca. 25-km range extension to the north-west from the closest known locality in the Hualapai Mountains. No suitable habitat exists between the two ranges. Rather than chaparral, a habitat type frequented by this species, Mohave desert scrub prevails in the lowlands separating the Cerbat and Hualapai mountain ranges. Specimen observed at 1600 h.

ZENON R. MOCARSKI, Arizona Game and Fish Department, Region III Office, 5325 Stockton Hill Road, Kingman, Arizona 86409, USA (e-mail: zmo-carski@azgfd.gov); **RANDALL D. BABB**, Arizona Game and Fish Department, Region VI Office, 7200 East University Drive, Mesa, Arizona 85207, USA (e-mail: rbabb@azgfd.gov).
GEOGRAPHIC DISTRIBUTION

JEFFREY E. DAWSON (e-mail: jdawson@stlzoo.org) and **ROGER D. BIRKHEAD**, COSAM Outreach, Alabama Science In Motion, Auburn University, Alabama 36849-5414, USA.

IAN M. LATELLA (e-mail: ilatella@unm.edu) and **HOWARD SNELL**, Museum of Southwestern Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, New Mexico 87131, USA.

This observation was made as part of the Great Plains Reptile Monitoring Project (www.reptilemonitor.org), with funding and logistical support provided by the U.S. Fish and Wildlife Service, Colorado Parks and Wildlife, Texas Parks and Wildlife, and Colorado State Land Board through a State Wildlife Grant, and from Colorado State University and the U.S. Geological Survey. Work was conducted under Scientific Collection Permit No. SC-000-2014 (State of Kansas) and Colorado State University ACUC #13-4218A.

DANIEL J. MARTIN (e-mail: danny.martin@colostate.edu) and **CAMERON L. ALDRIDGE**, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, 1499 Campus Delivery, 80523-1499, USA; **CELINA R. BYCENSKI**, BETH A. WITTMANN, DEVIN L. JACOBS, JAKE R. MILFORD, and **LARISSA L. BAILEY**, Colorado State University Department of Fish, Wildlife, & Conservation Biology, Fort Collins, Colorado 80523-1474, USA.

on 16 October 2014 within the Kickapoo Valley Reserve on Star Valley Trail. Associated habitat consisted of old field successional vegetation. Adjacent habitats were a mix of agricultural fields and fallow fields of upland grass and shrubs. This observation complements a specimen collected by K. Teed on 28 July 1990 in Wildcat Mountain State Park (Milwaukee Public Museum, MPM 23475). The individual was found just off State Highway 33 on the road to the lower picnic area (T14N R02W, Sec. 14 NE4).

TERRELL BECK, 53368A Haugrud Ridge Road, La Farge, Wisconsin 54639, USA (e-mail: beck.terr@uwlaux.edu); **BEN JOHNSTON**, Kickapoo Valley Reserve, 53661 State Road 131, La Farge, Wisconsin 54639, USA (e-mail: ben.johnston@wisconsin.gov); **ANDREW F. BADJE** and **RICHARD A. STAFFEN**, Wisconsin Department of Natural Resources-Bureau of Natural Heritage Conservation, 101 South Webster Street, PO Box 7921, Madison, Wisconsin 53707-7921, USA.

Python regius has been introduced in Florida via pet trade (Krysloko et al. 2011. Zootaxa 3028:1–64). This species is known from many sites in Florida, with the closest previous record (UF 169730) being from the City of Pensacola (30.4194°N, 87.276389°W), approximately 309 km E of this first Louisiana record. Collection databases (HerpetNet, VerNet, and the FLMN database) contain no record of *P. regius* from Alabama, Mississippi, or Texas. There is no evidence that *P. regius* is established in the state of Louisiana, although the species is thought to be established at a similar latitude and longitude in the Florida panhandle, despite a lack of direct evidence in the form of neonates or eggs (K. Krysloko and L. Somma, pers. comm.).

QUETZAL DWYER, Parque Reptilandia, APDO 692-8000, San Isidro el General, San José, Costa Rica; e-mail: reptilandia.cr@gmail.com.

TANTILLA HOBARTSMITHI (Smith’s Black-headed Snake). USA: CALIFORNIA: INYO CO.: Southeastern Argus Mountains, unnamed side canyon of Water Canyon (35.99036°N, 117.40489°W; WGS 84), 1150 m elev. 27 May 2014. Adam G. Clause. Natural History Museum of Los Angeles County (LACM 184721 [entire animal], TC 2082 [tissue], PC 1746–1747 [digital color photos]). New locality and second record from the Argus Mountains, ca. 26 km by air from the nearest known locality at Surprise Canyon, Panamint Mountains (Cole and Hardy 1903. Bull. Amer. Mus. Nat. Hist. 171:199–284; http://herpnet2.org; 11 June 2014). Northern Kingston Mountains, Crystal Spring (35.79444°N, 115.96178°W; WGS 84), 1160 m elev. 31 May–1 June 2014. Adam G. Clause. LACM 184750, TC 2090–2091, 2132, PC 1755–1756. New locality and third record from the Kingston Mountains, ca. 3 km by air from the nearest known locality of Smith Tale Mine, Kingston Mountains (HerpNet2, op. cit.). SAN BERNARDINO CO.: Southwestern Clark Mountains, Pachaluka Spring (35.51806°N, 115.63064°W; WGS 84), 1500 m elev. 29 May 2014. Adam G. Clause. LACM PC 1788. First record from the Clark Mountains, ca. 37 km by air from the nearest known locality of Horse Thief Springs, Kingston Mountains (Cole and Hardy, op. cit.; HerpNet2, op. cit.). Northeastern San Bernardino Mountains, Hwy 18, 0.8 road km S of Cushenbury Springs (34.35591°N, 116.85161°W; WGS 84), 1320 m elev. 11 June 2013. Philip Clevinger. LACM 185113, PC 1799. First record from the San Bernardino Mountains, ca. 54 km by air from the nearest known locality of Long Canyon, Joshua Tree National Park (Cole and Hardy, op. cit.; HerpNet2, op. cit.).

All specimens verified by Gregory B. Pauly via examination of head color pattern and/or hemipene structure. Snakes discovered under stones or DOR, associated with spring-fed riparian zones. These records partially fill several gaps in the spotty, relic distribution of *T. hobartsmithi*. They increase the total number of published and/or museum-vouchered California localities for this species to 28 (Cole and Hardy, op. cit.; HerpNet2, op. cit.; Persons and Nowak 2006. Inventory of Amphibians and Reptiles at Death Valley National Park. USGS Southwest Biological Science Center, Flagstaff, Arizona. 47 pp.; Stebbins 2003. Western Reptiles and Amphibians 3rd ed. Houghton Mifflin Co., New York, New York. 533 pp.). Our work was approved under California Department of Fish and Wildlife Scientific Collecting Permits #011663 and #010579, Bureau of Land Management Ridgecrest Field Office Permit #1110 (CA-6601.26) P, and University of Georgia IACUC AUP #A2012 10-004-Y1-A0. Financial support provided by a University of Georgia Presidential Fellowship.

ADAM G. CLAUSE, Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, Georgia 30602, USA (e-mail: adamclause@gmail.com); **PHILIP CLEVINGER**, AMEC Environment and Infrastructure, 13461 First Avenue, Victorville, California, 92395, USA (e-mail: phatcattbone@yahoo.com).

collected under a Oklahoma Department of Wildlife Conservation Scientific Collector’s permit issued to Elyse S. Freitas (#6081).

ALYSSA. M. ANWAR (e-mail: alyssa.anwar@yahoo.com), E. S. FREITAS, R. L. FLANAGAN, T. H. WALTON, and G. F. M. JONGSMA, Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, 2401 Chautauqua Avenue, Norman, Oklahoma 73072, USA.

UNGALIOPHIS PANAMENSIS (Southern Bromeliad Boa). PANAMÁ: PANAMÁ OESTE: Altos del María (8.63333°N, 80.06668°W; WGS 84), 700 m elev. 24 June 2006. Julie M. Ray, Edgardo J. Griffith, and Heidi L. Ross. Verified by James L. Knight. Amphibian and Reptile Diversity Research Center, University of Texas at Arlington (UTADC 6977, photo voucher). First record for the former Panamá Province and the new Panamá Oeste Province (Köhler 2008. Reptiles of Central America, 2nd ed. Herpeton Verlag, Offenbach. 200 pp.). The snake was found on the ground in primary premontane cloud forest. I thank the TADS project for logistical support and E. J. Griffith and H. L. Ross for assistance in the field.

JULIE M. RAY, La MICA Biological Station, El Copé de La Pintada, Coclé Province, Republic of Panamá; e-mail: julie.ray@lamic.org.

XENOCHROPHIS VITTATUS (Striped Keelback). USA: PUERTO RICO: MUNICIPALITY OF CAROLINA: Carolina Pueblo Country Club, 409 Street (18.408226°N, 65.961828°W; WGS84), 3 m elev. 22 July 2013. Brian Ríos-Dróz. MZUPRRP-R-15001. 504 Street (18.418684°N, 65.962445°W; WGS84), 0 m elev. 22 July 2013. Brian Ríos-Dróz. MZUPRRP-R-15002. Both verified by R. Graham Reynolds. First records from the Western Hemisphere for this snake normally native to Indonesia. Several other sightings of reproductively mature adults and juveniles, from separate locations in the Municipality of Carolina made by AH-M and others since 2011, indicate a well-established population on Puerto Rico. Time of introduction is unknown, but anecdotal accounts of “garter snake” sightings in the region are traced back to about 1994 and were thought to be accidental escapes from shipping containers, presumably destined for the pet trade, at the Luis Muñoz Marín International Airport, located ca. 4.5 km NW from collection sites.

ADRIANA HERRERA-MONTES, Department of Biology, University of Puerto Rico–Río Piedras Campus, P.O. Box 23360, San Juan, Puerto Rico 00931-3560, USA (e-mail: ahemontes@gmail.com); BRYAN RÍOS-DRÓZ, University of Puerto Rico–Humacao Campus, Call Box 860, Humacao, Puerto Rico 00792, USA (e-mail: riosd_bryan@hotmail.com); ALBERTO R. PUENTE-ROLÓN, Department of Biology, Inter American University–Areecibo Campus, Arecibo, Puerto Rico 00614, USA (e-mail: albertoskni@hotmail.com); DANIEL DÁVILA-CASANOVA, Department of Environmental Sciences, University of Puerto Rico–Río Piedras Campus, San Juan, Puerto Rico, USA (e-mail: coquidanny@gmail.com); NEFTALÍ RÍOS-LÓPEZ, Department of Biology, University of Puerto Rico–Humacao Campus, Jumaco, Puerto Rico, USA (e-mail: neftali.rios@upr.edu; neftalirios@yahoo.com).

ERRATUM
The latitude coordinates reported by Maxwell and Scott (2014. Herpetol. Rev. 45:466) for a record of Pituophis m. melanoleucus in Carroll Co., Tennessee, USA, should read 35.9354°N instead of 36.9354°N. The coordinates as published place the record in Marshall Co., Kentucky, whereas the correct coordinates put the record at the “gate to Carroll County Recreation Lake” as stated in the report.

A. FLOYD SCOTT, Department of Biology and Center of Excellence for Field Biology, Austin Peay State University, Clarksville, Tennessee 37044, USA; e-mail: scotta@apsu.edu.

Preliminary Herpetofaunal Inventory of a Logging Concession in the Upper Baram, Sarawak, Borneo

The island of Borneo is the largest of the Sundaic subregion (which comprises the Malay Peninsula, Sumatra, Java, Borneo, Bali, and smaller associated islands), and is the second largest tropical island in the world. Previously covered in mixed dipterocarp forest, it contains some of the last remaining continuous tracts of tropical rainforest in Southeast Asia and is recognized as one of the most biodiverse areas of the Indo-Malayan region (MacKinnon et al. 1996). However, Borneo experiences one of the highest deforestation rates in the world, with 1.7% of its forests converted annually primarily through commercial timber harvesting and conversion of forests to monoculture plantations (Koh 2007; Langer et al. 2007). While about 9% of the land area is afforded some level of protection, such protected areas are isolated and dwarfed by the vast areas designated for timber extraction and monoculture plantations (Brodie and Giordano 2011). The viability of such protected areas for the conservation of Borneo’s biodiversity is thus questionable (Meijaard et al. 2005).

Borneo boasts high herpetofaunal species richness and endemism, with 290 reptiles and 164 amphibian species currently described, making it the richest in terms of herpetofaunal diversity of the greater Sundas (compared to Sumatra: 218 reptiles and 93 amphibians, Java: 173 reptiles and 36 amphibians and Sulawesi: 115 reptiles and 40 amphibians; Das and van Dijk 2013).

Most herpetofaunal studies in Borneo have focused on protected areas. Little work has been conducted in modified landscapes such as logging concessions and monoculture plantations. In the Malaysian state of Sarawak, only 4% of the total land area is protected, whereas 35% is designated for

SAMi ASAAD*
JOHN MATHAI
DANIEL LAIRD
NICHOLAS ONG
LUCY BUCKINGHAM

28 Forshaw Lane, Burton Wood, Warrington, United Kingdom WAS 4ES

*Corresponding author; e-mail: sami.asad@hotmail.co.uk

Herpetological Review 46(1), 2015