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High-severity wildfires can increase hillslope-scale sediment yields by several 10 

orders of magnitude.  Accurate predictions of post-fire sediment yields are needed to 11 

guide management decisions and assess the potential impact of soil loss on site 12 

productivity and downstream aquatic resources.  The Revised Universal Soil Loss 13 

Equation (RUSLE) and Disturbed WEPP are the most commonly used models to predict 14 

post-fire sediment yields at the hillslope scale, but neither model has been extensively 15 

tested against field data.  The objectives of this paper are to: (1) compare predicted 16 

sediment yields from RUSLE and Disturbed WEPP against 252 plot years of data from 17 

nine fires in the Colorado Front Range; and (2) suggest how each model might be 18 

improved.    19 

Predicted and measured sediment yields were poorly correlated for RUSLE 20 

(R2=0.16) and only slightly better for Disturbed WEPP (R2=0.25).  Both models tended 21 

to over-predict sediment yields when the measured values were less than 1 Mg ha-1 yr-1, 22 

and under-predict higher sediment yields.  Model accuracy was not improved by 23 

increasing the soil erodibility (K) factor in RUSLE, and only slightly improved by 24 
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slowing the vegetative recovery sequence in Disturbed WEPP.  Both models much more 25 

accurately predicted the mean sediment yields for hillslopes grouped by fire and severity 26 

(R2=0.54 to 0.66) than for individual plots.  The performance of RUSLE could be 27 

improved by incorporating an erosivity threshold and a non-linear relationship between 28 

rainfall erosivity and sediment yields.  The performance of WEPP could be improved by 29 

reducing the effective hydraulic conductivity in sites that have recently burned at high 30 

severity.  The results suggest that neither model can fully capture the complexity of the 31 

different controlling factors and the resultant plot-scale variability in sediment yields. 32 

 33 

1.  Introduction 34 

Post-fire erosion is a major societal concern due to the potential effects on soil 35 

and water resources.  High-severity wildfires are of particular concern because they 36 

completely consume the protective surface litter and they can induce soil water 37 

repellency at or below the soil surface [Lowdermilk, 1930; Scott and van Wyk, 1990; 38 

DeBano, 2000; Huffman et al., 2001; Certini, 2005].  These changes can reduce the 39 

infiltration rate by an order of magnitude, and the resultant shift in runoff processes from 40 

subsurface stormflow to Horton overland flow can increase peak flows and sediment 41 

yields by two or more orders of magnitude [Inbar et al., 1998; Prosser and Williams, 42 

1998; Robichaud and Brown, 1999; Moody and Martin, 2001; Benavides-Solorio and 43 

MacDonald, 2005; Neary et al., 2005; Shakesby and Doerr, 2006].  44 

The consumption of the organic layer and increase in erosion can decrease site 45 

productivity [DeBano and Conrad, 1976; Robichaud and Brown, 1999; Thomas et al., 46 

1999].  The increase in runoff can induce downstream flooding [Helvey, 1980; Moody 47 



 3 

and Martin, 2001; Neary et al., 2005], and the delivery of ash and sediment to 48 

downstream reaches can severely degrade water quality, aquatic habitat, and reservoir 49 

storage capacity [Brown, 1972; Ewing, 1996; Greswell, 1999; Moody and Martin, 2001; 50 

Kerchner et al., 2003; Legleiter et al., 2003; Libohova, 2004]. 51 

Accurate predictions of post-fire sediment yields are needed to estimate the 52 

potential impacts of wild and prescribed fires on site productivity and downstream 53 

aquatic resources, estimate the potential benefits of post-fire rehabilitation treatments, 54 

and compare the effects of prescribed burning or forest thinning relative to wildfires.  The 55 

procedures for predicting post-fire erosion include: empirical models, such as the Revised 56 

Universal Soil Loss Equation (RUSLE) [Renard et al., 1997]; physically-based models, 57 

such as the Water Erosion Prediction Project (WEPP) [Elliot, 2004]; empirical models 58 

developed from previous wildfires [Benavides-Solorio and MacDonald, 2005; Pietraszek, 59 

2006]; spatially-distributed models, such as KINEROS [Woolhiser et al., 1990], 60 

SHESED [Wicks and Bathurst, 1996], and GeoWEPP [Renschler, 2003]; and 61 

professional judgment [Robichaud et al., 2000].  The problem is that these methods 62 

typically yield widely different values [Robichaud et al., 2000], and there have been 63 

almost no studies validating these models for burned areas.  64 

Over the past six years an extensive dataset has been collected on post-fire site 65 

characteristics, rainfall rates, erosion processes, and sediment yields in the Colorado 66 

Front Range.  The key data used in this study are the annual, hillslope-scale sediment 67 

yields measured from six wild and three prescribed fires from 2000 to 2004 [Benavides-68 

Solorio and MacDonald, 2005; Pietraszek, 2006] (Figure 1; Table 1).  These 69 

measurements were made on 83 plots burned at different severities in both older and 70 
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recent fires, and many of the plots were monitored from immediately after burning for up 71 

to five years.  This effort has yielded 281 plot-years of data (Table 1).  72 

The sediment yield data and data from associated studies [Huffman et al., 2001; 73 

Benavides-Solorio and MacDonald, 2001, 2002; MacDonald and Huffman, 2004; 74 

Libohova, 2004; Benavides-Solorio and MacDonald, 2005; MacDonald et al., 2005; 75 

Kunze and Stednick, 2006; Pietraszek, 2006; Wagenbrenner et al., 2006] were initially 76 

collected to determine the effects of various site factors on post-fire sediment yields, but 77 

they also provide a unique opportunity to evaluate the two models most commonly used 78 

to predict post-fire sediment yields.  These are: (1) RUSLE [Renard et al., 1997], and (2) 79 

Disturbed WEPP [Elliot, 2004], which is a web-based interface to the WEPP model 80 

[Flanagan and Nearing, 1995].  The specific objectives of this study were to: (1) test the 81 

accuracy of RUSLE and Disturbed WEPP to predict post-fire sediment yields; and (2) 82 

use the results to suggest how each model might be improved to increase prediction 83 

accuracy.  The results—when combined with the other process-based studies—highlight 84 

areas where additional research is needed to improve our understanding of post-fire 85 

erosion processes and model performance.  The results also can help resource managers 86 

quantify and incorporate model uncertainty into their management decisions. 87 

 88 

2.  RUSLE and Disturbed WEPP 89 

2.1.  RUSLE 90 

RUSLE is an updated version of the Universal Soil Loss Equation (USLE) 91 

[Wischmeier and Smith, 1978].  USLE and RUSLE are widely-used, empirical, 92 

deterministic models that were developed largely from agricultural plot data in the central 93 
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and eastern U.S.  The models are designed to predict the average annual soil loss from 94 

rainsplash, sheetwash, and rill erosion at the hillslope scale using equation 1: 95 

 96 

A=R * K * L * S * C * P       (1) 97 

 98 

where A is the average annual unit-area soil loss (Mg ha-1 yr-1), R is the rainfall-runoff 99 

erosivity factor (MJ mm ha-1 h-1), K is the soil erodibility factor (Mg ha-1 MJ-1 mm-1 ha 100 

h), L is the slope length factor [(m m-1)x], S is the slope steepness factor, C is the cover-101 

management factor, and P is the support practice factor [Renard et al., 1997].  RUSLE 102 

does not explicitly model infiltration, overland flow, particle detachment, or sediment 103 

transport, but empirically represents these processes through these six factors.  RUSLE is 104 

a lumped model at the hillslope scale, although algorithms are available to calculate the 105 

combined LS factor for complex hillslope shapes.  The slope length used to calculate L is 106 

defined as the horizontal distance from the initiation of overland flow to the point of 107 

deposition, so RUSLE is best characterized as predicting soil loss rather than sediment 108 

yield [Renard et al., 1997].  However, the predicted soil losses using RUSLE are 109 

equivalent to our measured sediment yields because there typically is little or no evidence 110 

of deposition upslope of the sediment fences used to measure sediment yields 111 

[Pietraszek, 2006]. 112 

 113 

2.2.  Disturbed WEPP 114 

Disturbed WEPP is an internet-based interface to the physically-based WEPP 115 

model that was developed for use on crop, range, and forested lands [Flanagan and 116 
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Nearing, 1995; Elliot, 2004].  WEPP uses a stochastically-generated daily climate to 117 

drive deterministic, physically-based models of infiltration, evapotranspiration, plant 118 

growth, plant decomposition, and the detachment, transport, and deposition of soil 119 

particles at the hillslope and small watershed scales [Flanagan and Nearing, 1995]. 120 

Disturbed WEPP was developed to predict average annual runoff and sediment 121 

yields for undisturbed forests and areas subjected to burning or forest harvest 122 

[http://forest.moscowfsl.wsu.edu/fswepp/; Elliot, 2004].  It basically provides a 123 

simplified interface between the WEPP program and users.  Disturbed WEPP is spatially 124 

distributed only in the sense that hillslopes can be divided into upper and lower segments 125 

that can differ with respect to topography, surface cover, treatments, and soils.  126 

The stochastically-generated daily weather data are derived from mean monthly 127 

climate statistics from one of the 2600 weather stations in the WEPP database.  The 128 

monthly statistics include: the number of wet days; the probability of consecutive wet or 129 

dry days; and the mean, standard deviation, and skew coefficient of the amount of 130 

precipitation on days with precipitation 131 

[http://forest.moscowfsl.wsu.edu/fswepp/docs/rockclimdoc.html].  The amount of 132 

precipitation is combined with a storm duration to obtain a peak rainfall intensity and 133 

time to peak intensity for each storm. 134 

Infiltration is modeled with the Green-Ampt equation as modified by Chu [1978] 135 

for unsteady rainfall.  Overland flow occurs when the rainfall rate exceeds the infiltration 136 

rate and depression storage capacity.  WEPP calculates the interrill detachment rate as a 137 

function of the interrill soil erodibility (Ki), rainfall intensity, interrill runoff rate, and 138 

slope.  The sediment delivered to rills by interrill erosion is either transported or 139 



 7 

deposited depending on rill geometry and the carrying capacity of the rill flow.  Rill 140 

detachment occurs when the shear stress within the rill exceeds the critical shear stress.  141 

The amount of rill detachment per unit excess shear stress is a function of the soil rill 142 

erodibility (Kr).  Sediment yields from rainfall and snowmelt are continuously simulated 143 

for each day of the year over a user-defined, multi-year simulation period. The daily 144 

values are summed and divided by the length of the simulation period to obtain the mean 145 

annual sediment yield for a given scenario [Elliot, 2004].  146 

Approximately 400 variables are needed to parameterize a typical run of WEPP 147 

Version 95.7 [Flanagan and Nearing, 1995].  Forest managers found the WEPP interface 148 

difficult to operate, the input data difficult to assemble, and the results difficult to 149 

interpret, so WEPP remained relatively unused [Elliot, 2004].  Disturbed WEPP was 150 

developed because it requires only seven user-defined inputs: identification of a climate 151 

station, slope length, slope steepness, soil texture, percent rock fragments in the soil, 152 

percent surface cover, and the specification of one of eight land use and land cover types 153 

(“treatments”) [Elliot, 2004].  The Disturbed WEPP interface uses these inputs to 154 

generate all of the other input parameters needed to run the WEPP model 155 

[http://forest.moscowfsl.wsu.edu/fswepp/docs/distweppdoc.html]. 156 

The eight treatments in Disturbed WEPP are high severity burn, low severity 157 

burn, short grass, tall grass, shrub, 5-year old forest, 20-year old forest, and skid trails.  158 

Moderate severity burn is not a separate treatment because field data suggest that burned 159 

areas can be adequately characterized by using just two classes—high severity and low 160 

severity [Robichaud, 2000; Pierson et al., 2001].  For burned areas, Disturbed WEPP 161 

assumes that the sequence of recovery follows the sequence of treatments listed in Table 162 
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2.  A change in treatment automatically alters key variables such as the effective 163 

hydraulic conductivity (Ke) and Kr [Elliot, 2004].  164 

 165 

3.  Methods 166 

3.1.  Study Sites and Field Data Collection 167 

The field data were collected from six wild and three prescribed fires that burned 168 

between July 1994 and August 2002 in the central and northern Colorado Front Range 169 

(Table 1; Figure 1).  The dominant vegetation prior to burning was ponderosa pine (Pinus 170 

ponderosa) at lower elevations and lodgepole pine (P. contorta) at higher elevations 171 

(Table 1).  The bedrock is predominantly granite, schist, or gneiss.  Soils are usually less 172 

than 1 m deep and range from sandy loams to gravelly coarse sands.  Soils at the Hayman 173 

and Schoonover fires are classified as Typic Ustorthents [Moore, 1992], and the soils at 174 

the other fires are Typic Argicryolls and Ustic Haplocryalfs [E. Kelly, Colorado State 175 

Univ., pers. comm., 2001].  176 

The estimated mean annual precipitation ranges from 360 mm at lower elevations 177 

to about 500 mm at higher elevations [Miller et al., 1973; Gary, 1975].  Winter 178 

precipitation falls as primarily as snow, and summer rainfall is dominated by localized, 179 

high intensity thunderstorms [Gary, 1975].  Precipitation in the spring and fall occurs 180 

primarily as a result of low intensity frontal storms that often shift between rain and 181 

snow.  The precipitation that falls during the summer, defined here as 1 June to 31 182 

October, accounts for 90% of the annual erosivity [Renard et al., 1997] and at least 90% 183 

of the annual sediment yield from burned hillslopes [Benavides-Solorio and MacDonald, 184 
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2005].  Hence year 1 is always the first summer after burning, year 2 is the second 185 

summer, etc. 186 

Data from unburned plots adjacent to the Hayman wildfire (Figure 1) indicate that 187 

rainfall intensities of 45-65 mm h-1 generally do not generate any surface runoff or 188 

sediment yields [Libohova, 2004; Brown et al., 2005].  In contrast, storms with as little as 189 

5 mm of rainfall and rainfall intensities of only 8-10 mm h-1 can generate overland flow 190 

and measurable amounts of sediment from high severity plots for up to three years after 191 

burning [Pietraszek, 2006; Wagenbrenner et al., 2006].  The relative lack of surface 192 

erosion in unburned areas and from snowmelt in burned areas means that the sediment 193 

produced in the summer after burning can be treated as an annual value [Benavides-194 

Solorio and MacDonald, 2005; Pietraszek, 2006].  At the scale of the study plots the only 195 

sediment generation processes are rainsplash, sheetwash, and rill erosion. 196 

One or more sediment fences [Robichaud and Brown, 2002; 197 

http://www.fs.fed.us/institute/middle_east/platte_pics/silt_fence.htm] were used to 198 

measure sediment yields from 83 unbounded hillslope plots or zero-order catchments 199 

(Figure 2).  The burn severity of each plot was qualitatively characterized as high, 200 

moderate, or low using the criteria developed by Wells et al. [1979] and applied by the 201 

USDA Forest Service [1995].  The forest canopy and surface litter were completely 202 

consumed in the 62 plots classified as high severity; three-quarters of the plots were in 203 

high severity areas (Table 1) because these areas have much higher runoff and sediment 204 

yields and are therefore of greatest concern [Morris and Moses, 1987; Benavides-Solorio 205 

and MacDonald, 2005]. 206 
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The input data for RUSLE and Disturbed WEPP were derived from field 207 

measurements.  In each plot the surface soils (0-5 or 0-3 cm) were sampled to determine 208 

the particle-size distribution by a combination of sieving and the hydrometer technique 209 

[Gee and Bauder, 1986].  Percent organic matter was determined by weight loss on 210 

ignition [Cambardella et al., 2001] or treatment with hydrogen peroxide [Nelson and 211 

Sommers, 1996].  Surface cover within each plot was measured at 100 points along 212 

multiple transects with a density of 0.01-1.4 measurements per m2 at the beginning and 213 

end of each growing season [Parker, 1951].  The contributing areas were defined by local 214 

topography and measured using a GPS with a horizontal accuracy of 2-5 m, a total 215 

station, or directly with cloth tapes.  The amount and intensity of summer rainfall was 216 

measured to the nearest 0.2-1.0 mm using 1-4 tipping-bucket rain gages that we installed 217 

near our study plots within each fire (Table 1).  Two-thirds of the plots were less than 500 218 

m from the nearest rain gage and the maximum distance was 1600 m.  Rainfall records 219 

were considered incomplete if more than one week of data was missing.  Periods with 220 

incomplete data were filled with records from the nearest gage up to a maximum distance 221 

of 10 km; sediment yield data were omitted if there were no rainfall data from within 10 222 

km.     223 

Following precipitation events, the mass of sediment trapped by each fence was 224 

removed by hand and measured to the nearest ¼ kg.  Samples were taken to determine 225 

the water content and convert the field-measured wet mass to a dry mass.  Sediment 226 

yields were normalized by dividing the dry mass by the contributing area.   227 

The primary dataset for model validation consisted of 183, 44, and 25 plot-years 228 

of sediment yield values from hillslopes burned at high, moderate, and low severity, 229 
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respectively (Table 1).  We excluded 29 of the 281 plot-years of data listed in Table 1 230 

because of incomplete rainfall data or the sediment fences overtopped, but the exclusion 231 

of these data had little effect on the magnitude or distribution of the remaining data.  The 232 

mean slope length of the plots used in this study was 71 m, and the range was from 20 m 233 

to 200 m.  The mean hillslope gradient was 32%, and the range was from 12% to 82%.  234 

The mean contributing area was approximately 1600 m2, and the range was from 70 m2 to 235 

11,200 m2.  236 

 237 

3.2.  Model Inputs 238 

3.2.1.  RUSLE  239 

The values for the R factor in RUSLE were calculated for each rain gage in each 240 

year by summing the erosivity [Brown and Foster, 1987] from 1 June to 31 October for 241 

each storm with at least 5 mm of rainfall.  The use of these calculated R values meant that 242 

the predicted sediment yields were based on the observed rainfall rather than the average 243 

annual R factor. The K factor for the plots in the Hayman and Schoonover fires were 244 

obtained from a soil survey [Moore, 1992].  Soil survey data were not available for the 245 

other seven fires except for the small Hewlett Gulch fire, and the K values for each plot 246 

in these seven fires were determined from the measured soil textures and organic matter 247 

contents following Stewart et al. [1975].   248 

Soil water repellency has been postulated as a major cause of the post-fire 249 

increases in runoff and erosion [DeBano, 1981; Letey, 2001], but water repellency is not 250 

explicitly included in RUSLE [González-Bonorino and Osterkamp, 2004].  Miller et al. 251 

[2003] suggested that the effect of post-fire soil water repellency could be incorporated 252 
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into RUSLE by adding 0.016 Mg ha-1 MJ-1 mm-1 ha h to the K factor.  This increase is 253 

equivalent to decreasing the soil permeability class from rapid to very slow [Renard et 254 

al., 1997].  We therefore evaluated two versions of RUSLE, and the first version 255 

(“RUSLE”) used the K values obtained from the soil surveys and soil texture data.  The 256 

modified version (“RUSLEm”) increased the K values in the plots that had burned at high 257 

severity by 0.016 Mg ha-1 MJ-1 mm-1 ha h for the first and second summers after burning, 258 

or 60-80%.   259 

The L and S factors were calculated from the field data for each plot following 260 

Renard et al. [1997].  The slope length used to calculate L was the horizontal distance 261 

from the sediment fence to the ridgetop, as our field data show that rilling often began 262 

within 10 m of a topographic divide.  We assumed a high ratio of rill to inter-rill erosion 263 

when calculating L because 60-80% of the post-fire sediment yield in the Colorado Front 264 

Range is due to rill and channel incision [Moody and Martin, 2001; Pietraszek, 2006]. 265 

The cover-management factor (C) in RUSLE is one of the most important 266 

variables because values can range over nearly three orders of magnitude and percent 267 

cover is a dominant control on post-fire sediment yields [Benavides-Solorio and 268 

MacDonald, 2005; Pietraszek, 2006].  In RUSLE the C factor is calculated by: 269 

 270 

C=PLU * CC * SC * SR * SM      (2) 271 

 272 

where PLU is the prior land use subfactor, CC is the canopy cover subfactor, SC is the 273 

surface cover subfactor, SR in the surface roughness subfactor, and SM is the soil 274 

moisture subfactor [Renard et al., 1997].   275 



 13 

PLU is calculated from a soil reconsolidation factor, the mass of roots, and the 276 

mass of buried residue [Renard et al., 1997].  Soil reconsolidation refers to the decrease 277 

in erosion with time following tilling, and we used a reconsolidation factor of 0.45 as 278 

recommended for forest soils [Dissmeyer and Foster, 1981].  The mass of roots was 279 

obtained by taking the rootmass value associated with the field-measured percent live 280 

vegetation and assuming the weeds vegetation class in the RUSLE 2.0 disturbed land 281 

database [Foster, 2004]; the mass of buried residue was assumed to be zero.  282 

The CC subfactor was calculated from percent canopy cover and fall height 283 

[Renard et al., 1997].  The percent canopy cover was assumed to equal the mean percent 284 

of live vegetation as measured by the spring and fall surface cover surveys.  The canopy 285 

fall height was taken from the comparable weeds vegetation database in RUSLE 2.0 and 286 

the resulting mean fall height was 7 cm.  We used this value since the mean fall height 287 

measured 1, 3, and 5 years after a high severity burn ranged from 5.5 cm to 12.2 cm with 288 

no obvious trend over time. 289 

SC is one of the most important components of C, and it was calculated by: 290 

 291 
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 293 

where b is a unitless coefficient that indicates the effectiveness of surface cover in 294 

reducing erosion, Sp is the percent surface cover, and Ru (inches) is the roughness of an 295 

untilled surface [Renard et al., 1997].  A b value of 0.05 is recommended where rilling is 296 

the dominant soil erosion process [Renard et al., 1997], and this value was used for all 297 
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plots.  Sp was assumed to equal the mean of the spring and fall cover values from each 298 

plot for each year.  Ru data were not available, but the Ru value for pinion-juniper inter-299 

spaces and rangeland soils with clipped vegetation and bare surfaces is 1.52 cm [Renard 300 

et al., 1997].  This value was used for the high severity plots in the first two years after 301 

burning because these plots had so little surface cover and surface roughness.  A Ru of 302 

2.54 cm was used in subsequent years and for the plots that had burned at moderate and 303 

low severity [Renard et al., 1997].  The SR subfactor was calculated using the same Ru 304 

values [Renard et al., 1997]. 305 

The SM subfactor ranges from 0.0 when soils are very dry to 1.0 when soils are 306 

relatively wet [Renard et al., 1997].  Since the SM subfactor has only been used in the 307 

wheat and range region of the northwestern U.S. [Renard et al., 1997] and has not been 308 

calibrated for burned forest soils [González-Bornino and Osterkamp, 2004], a value of 309 

1.0 was used.  The P factor was set to 1.0 because no conservation treatments had been 310 

applied. 311 

   312 

3.2.2.  Disturbed WEPP 313 

In Disturbed WEPP the stochastic daily weather is based on data from a user-314 

selected weather station.  The Cheesman weather station was used to represent the 315 

climate at the Hayman and Schoonover fires, and the Estes Park 1N station was used to 316 

represent the other fires (Figure 1).  For June to October we substituted the measured 317 

monthly rainfall and number of wet days as recorded at each rain gage for the historic 318 

means at each of the two climate stations.  Hence each predicted sediment yield was a 319 

mean value based on 50 years of simulated climate generated from the observed monthly 320 
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rainfall and number of wet days.  For the newly burned areas we set the precipitation 321 

from January to the month prior to burning to zero so that Disturbed WEPP would not 322 

over-predict sediment yields by simulating burned conditions prior to the time of burning.   323 

Hillslopes in Disturbed WEPP are divided into upper and lower segments.  Since 324 

a ridge crest typically formed the upper boundary of each study plot, the slope gradient 325 

for the top of the upper segment was set to 0% and the measured slope was used for the 326 

remainder of the hillslope.  The upper segment was assumed to represent 15% of the total 327 

plot length, as this was the approximate proportion of the ridgetop sections relative to the 328 

total plot length. 329 

Twenty-four parameters are required to describe the soil properties in the WEPP 330 

model [Alberts et al., 1995].  In Disturbed WEPP the user specifies one of four soil 331 

textures (loam, clay loam, silt loam, and sandy loam), one of eight treatments, and the 332 

percent of rock fragments (>2mm).  The Disturbed WEPP interface assigns a unique set 333 

of hydrologic, pedologic, and biologic values to each soil and treatment combination.  334 

The soil texture and percent of rock fragments were specified for each plot in accordance 335 

with the measured values.  336 

Disturbed WEPP requires the user to input percent surface cover and uses this 337 

value to simulate plant growth and residue decomposition.  Since the surface cover 338 

calculated by Disturbed WEPP generally was lower than our measured input values, we 339 

adjusted our input values until the calculated surface cover matched our measured values 340 

[Elliot, 2004].   341 

Since Disturbed WEPP does not include a treatment for areas burned at moderate 342 

severity, the measured sediment yields from the 14 plots burned at moderate severity 343 
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were compared to the values predicted using the high and low severity treatments, 344 

respectively.  The low severity treatment provided a better match to the observed values, 345 

so the sediment yields for the plots burned at moderate severity were predicted using the 346 

low severity treatment. 347 

We tested two versions of Disturbed WEPP because the surface cover and 348 

sediment yield data indicated a slower recovery for the plots burned at high severity than 349 

assumed in Disturbed WEPP (Table 2).  The first version (“Disturbed WEPP”) used the 350 

recommended sequence of treatments, and the modified version (“Disturbed WEPPm”) 351 

delayed the recovery of the plots burned at high severity by one year (Table 2). 352 

 353 

3.3.  Statistical Analysis 354 

A series of statistics was calculated to assess the accuracy of each model, as no 355 

single statistic can fully characterize the match between predicted and observed values 356 

[Willmott, 1981].  The statistics used here include: (1) the slope (b) and intercept (a) of 357 

the least-squares linear regression fit to the plot of predicted versus observed sediment 358 

yields; (2) the square of the correlation (R2) between the predicted and observed values; 359 

(3) the Nash-Sutcliffe model efficiency (R2
eff) [Nash and Sutcliffe, 1970]; (4) the root 360 

mean square error (RMSE) [Willmott, 1981]; and (5) the proportion of predicted values 361 

that falls within the 95% confidence intervals (CI) developed from replicated erosion 362 

plots at agricultural sites [Nearing, 1998, 2000; Nearing et al., 1999], as these CI have 363 

been used in previous WEPP validation studies [e.g., Laflen et al., 2004].  These 364 

validation statistics also were calculated for each year since burning to assess model 365 

performance over time.  The wide range of measured and predicted values meant that the 366 
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data were plotted on a log-log scale, and a value of 0.001 Mg ha-1 yr-1 was assigned to the 367 

plots that generated no measurable sediment. 368 

The Nash-Sutcliffe model efficiency is particularly useful because it facilitates 369 

comparison of our results with other RUSLE and WEPP validation studies [e.g., Tiwari et 370 

al., 2000; Yu et al., 2000; Spaeth et al., 2003], and R2
eff values can range from -� to 1.0.  371 

Unlike R2, a negative R2
eff  indicates that the mean observed value is a better predictor 372 

than the model, a value of 0.0 indicates that the mean observed value is as accurate a 373 

predictor as the model, and a R2
eff  of 1.0 indicates a perfect match between the predicted 374 

and observed values [Nash and Sutcliffe, 1970].  375 

The mean of the observed and predicted sediment yields from groups of hillslopes 376 

were compared to determine the effect of plot-scale variability on model accuracy.  The 377 

plots that burned at high severity were grouped by fire, whereas the plots that burned at 378 

moderate and low severity were grouped by severity because of the small number of such 379 

plots in each fire (Table 1). 380 

 381 

4.  Results 382 

4.1.  RUSLE and RUSLEm 383 

4.1.1.  Erosivity and Cover Values 384 

Summer rainfall and erosivity values at our field sites were generally lower than 385 

the long-term mean, but the values were highly variable between fires and between years.  386 

The overall mean erosivity of 286 MJ mm ha-1 h-1 was 21-24% below the long-term 387 

means [Foster, 2004].  The lowest summer erosivity was 6 MJ mm ha-1 h-1 at the Dadd 388 

Bennett fire in 2002, and the highest value was 1210 MJ mm ha-1 h-1 at the Green Ridge 389 
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site at the Bobcat fire in 2003.  Rainfall intensity varied considerably, but less than 2% of 390 

the 1706 rainfall events recorded through 2003 had maximum 30-minute intensity (I30) 391 

values greater than 25 mm h-1 and only 5 of the rainfall events had I30 values greater than 392 

40 mm h-1, which is approximately a 2-5 year storm for the Colorado Front Range 393 

[Pietraszek, 2006].  394 

In the first year after burning, the mean surface cover was 14% for the plots that 395 

had burned at high severity, 41% for the plots that had burned at moderate severity, and 396 

70% for the plots that had burned at low severity (Figure 3a).  The amount of surface 397 

cover increased rapidly over time due to vegetative regrowth and litterfall in the plots 398 

burned at moderate and low severity.  On average, the surface cover reached 70% within 399 

four years for the plots burned at high severity and within two years for the plots burned 400 

at moderate severity (Figure 3a).   401 

Since many of the subfactors in the C factor are inversely related to the amount of 402 

vegetative regrowth and surface cover, the calculated values of the C factor increased 403 

with burn severity and decreased non-linearly with time since burning (Figure 3b).  In the 404 

first year after burning, the mean C factor was 0.20 for the plots that had burned at high 405 

severity, which significantly higher (p<0.001) than the mean C factor values of 0.05 and 406 

0.01 for the plots that had burned at moderate and low severity, respectively.  By the third 407 

year after burning the mean C factor for high severity plots had declined to 0.03.  By the 408 

fourth year after burning the mean C factor was less than 0.006 for each burn severity 409 

class, and the maximum value for a single plot was 0.02.   410 

 411 

4.1.2.  RUSLE Model Performance 412 
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The correlations between the predicted and observed sediment yields for 413 

individual plots were very low, as the R2 was 0.16 for RUSLE and 0.14 for RUSLEm 414 

(Table 3).  The R2
eff for RUSLE was 0.06, indicating that the model was only a slightly 415 

better predictor of post-fire sediment yields than the mean (Table 3).  The R2
eff for 416 

RUSLEm was worse at -0.26 (Table 3).  Both RULSE and RUSLEm tended to 417 

substantially over-predict sediment yields when the observed values were less than 1 Mg 418 

ha-1 yr-1, and under-predict sediment yields when the observed values were greater than 1 419 

Mg ha-1 yr-1 (Figure 4).  This meant that the slope of the regression line for the RUSLE 420 

model was only 0.24 instead of the desired value of 1.0 (Table 3; Figure 4).  From a 421 

practical point of view, the errors at the low end are not as important as the absolute 422 

errors at the high end, and for sediment yields greater than 1 Mg ha-1 yr-1 the RMSE was 423 

10.3 Mg ha-1 yr-1 for RUSLE and 11.9 Mg ha-1 yr-1 for RUSLEm.  Only 38% of the 424 

predicted values from either model were within the 95% CI (Figure 4). 425 

When stratified by time since burning, the best performance was in the fourth year 426 

after burning, but the R2
eff values never exceeded 0.17 (Table 4).  When stratified by burn 427 

severity, the R2
eff values were less than zero for both the high and the moderate severity 428 

plots for both RUSLE and RUSLEm.  429 

Increasing the K factor for high severity plots for the first two years after burning  430 

increased the predicted sediment yields and the slope of the regression line, but did not 431 

improve overall model performance relative to RUSLE (Table 3).  Most importantly, the 432 

R2
eff values for the first and second years after burning were lower for RUSLEm than for 433 

RUSLE (Table 4).  434 
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Model predictions were much better for groups of plots than for individual plots 435 

(Table 3; Figure 5).  For RUSLE and RUSLEm, the respective R2
eff values increased to 436 

0.52 and 0.31 (Table 3).  The slopes of the regression lines increased and the intercepts 437 

decreased (Table 3; Figure 5).  The percentage of values within the 95% CI increased to 438 

56% for RUSLE and 59% for RUSLEm (Figure 5).   The mean values for sites burned at 439 

low and moderate severity plotted very close to the 1:1 line for both RUSLE models 440 

(Figure 5).  When the grouped data were stratified by time since burning, the R2
eff values 441 

were positive for years 2-4 but negative for the first year after burning and for years 5-10 442 

(Table 4).  Overall, RUSLE performed better than RUSLEm for both the individual and 443 

the grouped hillslopes.   444 

 445 

4.2.  Disturbed WEPP and Disturbed WEPPm 446 

4.2.1.  Rainfall  447 

The long-term mean summer precipitation is 200 mm for Estes Park and 225 mm 448 

for Cheesman.  From 2000 to 2003 the summer precipitation at each of these two stations 449 

was similar to or below the long-term mean, while the precipitation in summer 2004 was 450 

106% above average at Estes Park and 20% above average at Cheesman.  The measured 451 

summer precipitation values at Estes Park and Cheesman generally were comparable to 452 

the values measured at the corresponding field sites.  Since the climate stations and fires 453 

are in similar climatic zones and had similar summer rainfall values, the climate statistics 454 

from Estes Park and Cheesman can be applied to our study sites. 455 

 456 

4.2.2.  Disturbed WEPP Model Performance 457 
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The two Disturbed WEPP models more accurately predicted the sediment yields 458 

from individual plots than either of the RUSLE models, but the performance of both 459 

versions of Disturbed WEPP was still only slightly better than the mean.  For Disturbed 460 

WEPP the R2
eff was 0.19, and for Disturbed WEPPm the R2

eff  was 0.23 (Table 3).  As 461 

with RUSLE, both models tended to over-predict the smaller sediment yields and under-462 

predict the larger sediment yields (Figure 6).  The RMSE for sediment yields greater than 463 

1 Mg ha-1 yr-1 were 9.4 Mg ha-1 yr-1 for Disturbed WEPP and 8.9 Mg ha-1 yr-1 for 464 

Disturbed WEPPm, or slightly less than for RUSLE.  This pattern of prediction errors 465 

meant that the regression lines had high intercepts and low slopes (Table 3).  466 

Approximately one-half of the predicted values from the Disturbed WEPP models fell 467 

within the 95% CI as compared to just 38% for the RUSLE models (Figure 6). 468 

A one year delay in the recovery sequence for the high severity plots slightly 469 

improved model performance (Table 3).  The R2
eff values over time show that almost all 470 

of this improvement was associated with the substantially better performance of 471 

Disturbed WEPPm in the third year after burning.  The slower recovery sequence had 472 

little or no effect on model performance in the first two years after burning and years 4-473 

10 (Table 4).     474 

As with RUSLE, the two versions of Disturbed WEPP much more accurately 475 

predicted the mean sediment yields for groups of hillslopes than for individual hillslopes 476 

(Figure 7).  The R2
eff values more than doubled to 0.53 for Disturbed WEPP and 0.65 for 477 

Disturbed WEPPm (Table 3).  The slope of the regression line increased to 0.50 for 478 

Disturbed WEPP and 0.68 for Disturbed WEPPm, and both intercepts decreased by about 479 

50% (Table 3).  The percentage of data points within the 95% CI increased to 56% for 480 



 22 

Disturbed WEPP and 63% for Disturbed WEPPm.  Like RUSLE, the data points for the 481 

groups of plots that burned at low and moderate severity were very close to the 1:1 line 482 

(Figure 7).  The improvement in model performance for the grouped plots was slightly 483 

smaller for Disturbed WEPP than Disturbed WEPPm. 484 

 485 

5.  Discussion 486 

5.1.  Comparisons Against other Validation Studies 487 

The R2
eff  values show that three of the four models (RUSLE, Disturbed WEPP, 488 

and WEPPm) predicted the post-fire sediment yields from individual hillslopes better than 489 

the mean, but the highest R2
eff  was only 0.23.  The predictions for the grouped hillslopes 490 

were much better (Table 3), but the quantitative results need to be compared to other 491 

validation studies because there are no accepted accuracy standards for sediment 492 

prediction models [Nearing et al., 1999].  The most comprehensive validation of RUSLE 493 

and WEPP used 1600 plot-years of data from 190 plots at 20 agricultural research sites in 494 

the eastern and central U.S. [Tiwari et al., 2000].  For RUSLE the overall R2
eff for annual 495 

sediment yields was 0.60, and this increased to 0.72 for the mean annual sediment yields 496 

(Table 5).  WEPP had a lower R2
eff (0.40) for annual sediment yields, but a very similar 497 

R2
eff  (0.71) for the mean annual sediment yields (Table 5).  The high R2 and R2

eff values 498 

may be somewhat misleading, as the equations and parameters in RUSLE and WEPP 499 

were based in part on the data from these plots [Risse et al., 1995; Zhang et al., 1995a, b; 500 

Tiwari et al., 2000].  The improved performance for mean annual sediment yields helps 501 

confirm that RUSLE and WEPP are better at predicting values for average conditions 502 

than individual years. 503 
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 A more rigorous test of these models is to evaluate their performance for 504 

environments and land uses that differ from where the models were developed.  Negative 505 

R2
eff values were obtained when RUSLE was used to predict erosion from successive 506 

rainfall simulations on 132 plots at 22 rangeland sites in the western U.S. [Spaeth et al., 507 

2003] (Table 5).  In northwestern Australia, WEPP accurately predicted monthly 508 

sediment yields from agricultural plots only after the infiltration and soil erodibility 509 

parameters were calibrated to local conditions [Yu et al., 2000] (Table 5).   510 

Only two other studies have attempted to validate RUSLE and WEPP in forested 511 

or burned areas.  In the first study, Disturbed WEPP explained 64% of the observed 512 

variability in sediment yields from harvested and burned sites in the western and 513 

southeastern U.S. [Elliot, 2004] and 90% of the predicted sediment yields fell within the 514 

95% CI suggested by Nearing and colleagues [Laflen et al., 2004].  In northwestern Spain 515 

the WEPP model was tested against four years of data from an unburned scrubland plot, 516 

two plots burned by a prescribed fire, and one plot burned by a high intensity wildfire 517 

[Soto and Díaz-Fierros, 1998].  Climate files were created from the on-site rainfall data, 518 

and the measured plant growth and residue decomposition in each plot were used to 519 

optimize the biomass and litter accumulation parameters [Soto and Díaz-Fierros, 1998].  520 

We used their measured and predicted sediment yields to calculate the overall R2
eff for 521 

each plot, and these values were 0.92 for the unburned plot, 0.61 for the plots burned by a 522 

prescribed fire, and only 0.03 for the plot burned by a wildfire (Table 5).  As in the 523 

Colorado Front Range, the WEPP model under-predicted the sediment yields from the 524 

plot burned by a high intensity wildfire by 2-10 times.  525 
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Taken together, these results show that the RUSLE and WEPP models tend to be 526 

less accurate as they are taken to other geographic areas or applied to non-agricultural 527 

lands [Toy et al., 1999], and they highlight the inherent difficulty in predicting plot or 528 

hillslope-scale sediment yields.  The comparisons of our results against the values in 529 

Table 5 show that RUSLE and Disturbed WEPP were much less successful in predicting 530 

post-fire sediment yields from individual hillslopes in the Colorado Front Range than for 531 

agricultural plots in the U.S.  Prediction accuracy for our groups of burned hillslopes was 532 

much stronger and comparable to the prediction accuracy for the mean annual sediment 533 

yields from agricultural plots in the eastern and central U.S. (Tables 4, 5).   534 

 535 

5.2.  Sources of Error 536 

Prediction errors can be due to model error, errors in the input data, and errors in 537 

the data used for validation (i.e., sediment yields) [Nearing et al., 1999].  Both RUSLE 538 

and WEPP are primarily deterministic, and model errors occur when the empirical or 539 

physically-based equations do not adequately represent key processes, or when a site-540 

averaged value does not capture the smaller-scale variations in plot conditions and key 541 

processes such as infiltration [Beven, 2000].  It usually is very difficult to separate model 542 

errors from measurement errors, but the intensive field studies conducted in conjunction 543 

with our sediment yield measurements allow us to assess the accuracy of several key field 544 

measurements.  Most of the remaining error can then be assigned to model errors. 545 

 546 

5.3.  Measurement Errors   547 
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The uncertainties in rainfall, surface cover, and sediment yields are the most 548 

important potential sources of measurement errors [Pietraszek, 2006].  Comparable 549 

tipping-bucket rain gages were used at each site, and the rainfall data were carefully 550 

reviewed and edited.  While measurement errors from rain gages cannot be completely 551 

eliminated [Sevruk, 1986], the summer rainfall data should be relatively accurate and 552 

comparable.  The biggest concern is whether the rain gages accurately represent the true 553 

rainfall at each individual plot, as nearly all of the sediment is generated from localized 554 

summer convective storms that can exhibit considerable spatial variability.   555 

The highest density of rain gages was at the Hayman fire, and this fire accounted 556 

for 22% of the 252 plot-years of data.  In 2003 and 2004 we measured rainfall at four 557 

gages that were less than 2 km apart, and in 2003 the coefficient of variation (CV) for the 558 

total summer rainfall for these four gages was only 10% or 15 mm.  In the much wetter 559 

summer of 2004 the CV was 14% or 40 mm.  There was slightly more spatial variability 560 

in the total summer erosivity, as the CV was 17% in 2003 and 20% in 2004.   561 

The spatial variations in rainfall will have a greater effect on the predicted 562 

sediment yields in RUSLE than Disturbed WEPP because the rainfall erosivity values 563 

were more variable than total rainfall, and in RUSLE the predicted sediment yield is a 564 

linear function of erosivity (Eq. 1).  Simulations using Disturbed WEPP show that for a 565 

typical hillslope a ±15 mm change in the 2003 summer rainfall at the Hayman fire would 566 

alter the predicted sediment yield by no more than 3%, while a ±40 mm change in 567 

summer 2004 rainfall would alter the predicted sediment yield by less than 5%.  In 2003 568 

and 2004 the RMSE for Disturbed WEPP at the Hayman fire was 9.9 Mg ha-1 yr-1, and 569 

this was slightly higher than the mean measured sediment yield.  This high RMSE means 570 



 26 

that the uncertainty in the rainfall data has minimal effect on the overall performance of 571 

Disturbed WEPP.   572 

The accuracy of our surface cover data was assessed by repeating measurements 573 

with the same observer, testing different sampling schemes with the same observer, and 574 

comparing the data from different observers.  Transect orientation and spacing had little 575 

influence on measurement accuracy, as the values for the different sampling schemes 576 

differed by only 2-3% from the overall mean.  Observer variability was higher, as 27 577 

pairwise comparisons between observers showed an absolute mean difference of 8% 578 

(s.d.=5%).  The potential bias due to observer error is minimized because one observer 579 

collected most of the data in 2000 and 2001, and a second observer collected most of the 580 

data in 2002-2004.   581 

A ±3% error in the amount of surface cover could cause the RUSLE SC subfactor 582 

to change by up to 15%, and this would cause a corresponding change in the C factor and 583 

predicted sediment yields.  For Disturbed WEPP, a ±3% change in surface cover on a 584 

typical hillslope at the Hayman fire would alter the predicted sediment yields by ±11%.  585 

While any error in measuring surface cover will alter the predicted sediment yields, the 586 

potential effect of these errors is still small relative to the RMSE for RUSLE and 587 

Disturbed WEPP (Table 3).  588 

Several lines of evidence indicate that the errors in our measured sediment yields 589 

are relatively small.  First, most of the plots with a high potential for sediment production 590 

had two or more sediment fences in series (Figure 2), and the first fence typically trapped 591 

at least 90% of the total sediment, even for the largest rainstorms.  The smallest storms 592 

had lower trap efficiencies because they only mobilized the finer particles [Pietraszek, 593 
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2006], but the sediment yields from these storms represented only a small fraction of the 594 

annual totals.  Second, all of the sites have coarse-textured soils with less than 5% clay 595 

[Pietraszek, 2006], and the preponderance of coarse particles helps maximize trap 596 

efficiency [Munson, 1989].  Other studies have documented trap efficiencies of over 90% 597 

for sandy soils [Munson, 1989] and silt loam soils [Robichaud et al., 2001].  Finally, any 598 

under-measurement of sediment yields would tend to degrade rather than improve model 599 

performance, as the low magnitude values have little influence on the R2
eff or RMSE and 600 

the sediment yields greater than 1 Mg ha-1 yr-1 are already under-predicted (Figures 4, 6).  601 

These results indicate that most of the prediction errors are due to model errors rather 602 

than measurement errors. 603 

 604 

5.4.  Model Errors in RUSLE and Potential Improvements 605 

Many studies have examined the different sources of error in USLE and RUSLE 606 

and suggested possible improvements.  These include changes in model structure [Tran et 607 

al., 2002; Sonneveld and Nearing, 2003], changes in specific parameters [Kinnell and 608 

Risse, 1998; Kinnell, 2005], and ways to extend RUSLE to new geographic areas 609 

[McIsaac, 1990; Liu et al., 2000; Cohen et al., 2005; Hammad et al., 2005].  The use of 610 

RUSLE in undisturbed forests is troublesome because overland flow is so uncommon 611 

[Dunne and Leopold, 1978], but the predominance of overland flow after high severity 612 

burns [Shakesby and Doerr, 2006] means that RUSLE should be much more applicable.  613 

The primary effects of burning are to alter the soil and surface cover, and in RUSLE 614 

these changes have to be encompassed through changes in the K and C factors.  Sections 615 

5.4.1 and 5.4.2 discuss whether the K and C factors can account for the documented 616 
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effects of fires on soils, vegetation, and litter.  Section 5.4.3 discusses whether the 617 

relationship between rainfall erosivity and sediment yields should be linear as assumed in 618 

RUSLE. 619 

 620 

5.4.1.  K factor 621 

The K factor is determined from the soil texture, percent organic matter, 622 

permeability class, and soil structure class [Renard et al., 1997].  Post-fire soil water 623 

repellency and the resultant decline in infiltration is often considered the primary cause of 624 

the increase in runoff after burning [e.g., DeBano, 2000; Shakesby and Doerr, 2006], but 625 

soil water repellency is not explicitly considered in RUSLE.  Hence this section focuses 626 

on whether the K factor can incorporate the effects of fire-induced changes in 627 

permeability, soil organic matter, and soil structure.  628 

Permeability is considered when calculating the K factor by assigning a soil to 629 

one of six permeability classes [Renard et al., 1997].  Several studies in the Colorado 630 

Front Range have shown that high severity burns reduce the infiltration rate to only 8-10 631 

mm h-1 [Moody and Martin, 2001; Kunze and Stednick, 2006; Wagenbrenner et al., 632 

2006].  This infiltration rate falls into the slow-moderate permeability class (4-18 mm h-1) 633 

in RUSLE.  If the soils are assumed to be in the highest permeability class (rapid, or �108 634 

mm h-1) prior to burning, the reduction in permeability will increase the K factor by 635 

0.0095 Mg ha-1 MJ-1 mm-1 ha h.  This change would increase our K factors and predicted 636 

sediment yields by 40-50%.  The problem is that high-severity burns increase sediment 637 

yields by several orders of magnitude [e.g., Moody and Martin, 2001; Coelho et al., 638 

2004; Benavides-Solorio and MacDonald, 2005; Shakesby and Doerr, 2006], so the 639 
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maximum change in permeability can account for only a small fraction of the observed 640 

change in sediment yields.  The suggestion to increase the K factor by 0.016 Mg ha-1 MJ-1 641 

mm-1 ha h for sites burned at high severity [Miller et al., 2003] is equivalent to a change 642 

from rapid to very slow permeability, but the resultant 60-80% increase in our K values 643 

and predicted sediment yields is again much smaller than the sediment yield increases 644 

observed after high severity burns. 645 

High severity burns also consume the soil organic matter that binds soil 646 

aggregates, and this greatly reduces the structural stability of the soil and increases the 647 

soil erodibility [Giovannini and Lucchesi, 1983; Neary et al., 1999; DeBano et al., 2005; 648 

Moody et al., 2005].  The nomograph or equation used to calculate K uses four soil 649 

structure classes, and for a given soil a very fine granular structure has the lowest K 650 

factor, a coarse granular structure has an intermediate K factor, and a soil with a blocky 651 

or platy structure has the highest K factor [Renard et al., 1997].  Burning results in a 652 

more friable, less cohesive, and more erodible soil [Scott et al., 1998; Badía and Martí, 653 

2003; DeBano et al., 2005; Moody et al., 2005; Shakesby and Doerr, 2006], but the 654 

quantitative effect of the structure classes on the K factor presume the opposite 655 

relationship [Wischmeier and Mannering, 1969].  The net result is that a fire-induced 656 

decrease in aggregate stability decreases the K factor when it really should increase the K 657 

factor.  This discrepancy was recently noted for unburned soils by Foster [2004]. 658 

The K factor is relatively sensitive to percent organic matter and decreases as 659 

organic matter increases [Renard et al., 1997].  Our field measurements indicate that a 660 

high severity fire reduces the soil organic matter in the top 3 cm from about 2.2% to 661 

1.9%, and this only increases our K factors by 1-2%.   662 
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As presently formulated, the maximum increase in the K factor after burning is 663 

limited because the effects of the decreases in permeability and percent organic matter 664 

are countered by the change in structural class.  Even if the relationship between 665 

structural class and erodibility was reversed to be consistent with our understanding of 666 

post-fire erosion processes, the maximum increase in K for our study sites would still be 667 

about 0.023 Mg ha-1 MJ-1 mm-1 ha h or 100%.   668 

The effect of burning on the K factor also can be loosely estimated by comparing 669 

the values for unburned soils against values back-calculated from our field plots.  The 670 

original K values in RUSLE were determined by dividing the soil loss by the rainfall 671 

erosivity for a standard plot (22 m long, 1.8 m wide, 9% slope, no surface cover, and 672 

ploughed up and down) [Renard et al., 1997].  While most of our plots are larger and 673 

steeper than a standard plot, the severely burned plots are similar in terms of having less 674 

than 15% surface cover.  The mean back-calculated K factor for these plots is 0.05 Mg 675 

ha-1 MJ-1 mm-1 ha h, and this is 2.5 times the K values obtained from the soil survey 676 

[Moore, 1992] and twice the K values estimated using Stewart et al. [1975].   677 

These results indicate that the algorithm for calculating K values are not 678 

consistent with our current understanding of erosion processes.  A revision of the 679 

relationship between soil structure and erodibility would increase the K factors after 680 

burning and better match the K values that we back-calculated from our field data.  Even 681 

if this relationship were reversed, the maximum increase in K is only 100%, and this 682 

increase is only a small fraction of the 2-3 order of magnitude increase in sediment yields 683 

induced by high severity burns [e.g., Morris and Moses, 1987; Inbar et al., 1998; Prosser 684 
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and Williams, 1998; Robichaud and Brown, 1999; Libohova, 2004; Shakesby and Doerr, 685 

2006]. 686 

 687 

5.4.2.  C factor 688 

The C factor is the ratio of the soil loss from a plot with some surface cover to the 689 

soil loss from an identical plot with bare soil [Renard et al., 1997].  In forest and shrub 690 

lands in the western U.S., sediment yields are highest when there is less than about 35% 691 

surface cover and very low when surface cover exceeds about 60-65% [e.g., Packer, 692 

1951; Brock and DeBano, 1982; Johansen et al., 2001].  Recent studies have shown a 693 

strong nonlinear relationship between percent bare soil and post-fire sediment yields 694 

[Pannkuk and Robichaud, 2003; Benavides-Solorio and MacDonald, 2005; 695 

Wagenbrenner et al., 2006; Pietraszek, 2006].  Conceptually, a high-severity burn should 696 

greatly increase the C factor because of the loss of canopy cover, loss of surface cover, 697 

and reduction in surface roughness.  The problem is that most studies of post-fire 698 

sediment yields have not incorporated detailed measurements of soil consolidation over 699 

time, soil root mass over time, drop fall height from the canopy to the soil surface, and 700 

surface roughness.  In the absence of such data, it is not possible to assess how burning 701 

affects each of these subfactors or the validity of the relationships used to calculate the C 702 

factor [González-Bonorino and Osterkamp, 2004], particularly since the subfactors were 703 

derived primarily from agricultural plots and secondarily from rangeland plots [Weltz et 704 

al., 1987; Renard et al., 1997]. 705 

 As with the K factor, there is an inconsistency between the known effects of 706 

burning on the different subfactors and the current formulation of the C factor.  In 707 
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particular, the SM (soil moisture) subfactor increases with increasing soil moisture.  This 708 

relationship is generally valid for unburned sites, as higher soil moisture values reduce 709 

the hydraulic gradient, decrease infiltration, and thereby increase runoff and surface 710 

erosion [DeBano, 2000; Hillel, 2004].  However, high and moderate severity burns often 711 

induce a water repellent layer at or near the soil surface in vegetation types such as 712 

chaparral and coniferous forests [DeBano, 2000; Huffman et al., 2001].  This soil water 713 

repellency generally weakens as soil moisture increases, so drier soils typically have 714 

lower infiltration rates than the same soil under wetter conditions [DeBano, 2000; 715 

Huffman et al., 2001].  This tendency is opposite to the present formulation of the SM 716 

subfactor. 717 

Any effort to revise the SM subfactor will be hindered by the complexity of soil 718 

water repellency in burned areas, and this includes the dependence of soil water 719 

repellency on burn severity, soil moisture, and time since burning, as well as the extreme 720 

spatial variability in soil water repellency [Doerr and Thomas, 2000; Ferreira et al., 721 

2000; Leighton-Boyce et al., 2003; Huffman et al., 2001; MacDonald and Huffman, 2004; 722 

Woods et al., 2007].  While additional studies are needed to predict soil water repellency 723 

and infiltration rates in burned areas, the current formulation of the C factor is 724 

problematic in that burning increases four of the five subfactors while decreasing the SM 725 

subfactor.  One also could argue that the effects of soil moisture should be incorporated 726 

into the K factor rather than the C factor, since this is primarily a soils issue.  727 

 Our working hypothesis prior to conducting this study was that the C factor 728 

should be close to 1.0 in areas that recently burned at high severity, as the mean surface 729 

cover for these areas was only 14%.  Our best efforts to calculate the C factor yielded a 730 
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mean value of 0.20 for areas that recently burned at high severity, and a maximum value 731 

of 0.33.  This mean value is nearly identical to the 0.21 value calculated for high severity 732 

burns in ponderosa pine at the Cerro Grande fire in northcentral New Mexico [Miller et 733 

al., 2003].  We conclude that the post-fire increases in the K and C factors are too small 734 

given the under-prediction of sediment yields for the plots that generated more than 1 Mg 735 

ha-1 yr-1 (Figure 4).   736 

 737 

5.4.3.  R factor 738 

 The final issue with the use of RUSLE to predict post-fire sediment yields are the 739 

assumptions that: (1) sediment yields begin as soon as the rainfall erosivity exceeds zero 740 

and, (2) sediment yields increase linearly with rainfall erosivity.  The pattern of errors in 741 

Figures 4 and 5 suggests that these assumptions are a primary cause of the over-742 

prediction of low values and under-prediction of high values, and resulting low R2
eff  743 

values.  Most process-based rainfall-runoff models require a certain amount of 744 

precipitation before any overland flow is generated, and our field data indicate that 5-20 745 

MJ mm ha-1 h-1 is the minimum storm erosivity needed to generate sediment from plots 746 

that recently burned at high severity [Benavides-Solorio and MacDonald, 2005; 747 

Pietraszek, 2006; Wagenbrenner et al., 2006].  A substantially higher storm erosivity is 748 

necessary to generate sediment from less severely burned plots or burned plots that have 749 

partially revegetated.  The tendency for RUSLE to over-predict low sediment yields 750 

could be easily improved by incorporating an erosivity threshold that must be exceeded 751 

before any sediment is generated. 752 
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The assumed linearity between rainfall erosivity and sediment yields also is 753 

inconsistent with field observations.  Both our data and other studies indicate that 754 

sediment yields increase linearly as annual erosivity approaches 150-300 MJ mm ha-1 h-1, 755 

but beyond this point doubling the erosivity increases sediment yields by a factor of three 756 

of more [Tran et al., 2002; Benavides-Solorio and MacDonald, 2005].  It is difficult to 757 

determine the general form of the relationship between rainfall erosivity and sediment 758 

yields because the more extreme storms are infrequent and combining data from different 759 

sites can be problematic due to the high variability in sediment yields from apparently 760 

similar plots.  The relationship between rainfall erosivity and sediment yields also is 761 

complicated by the fact that RUSLE is a conceptual model, so it uses rainfall erosivity as 762 

a surrogate for both raindrop energy and other processes, such as the velocity and depth 763 

of overland flow.  Rainfall simulations may be the best means to characterize the upper 764 

end of the relationship between rainfall erosivity and sediment yields for different site 765 

conditions, but for burned areas these simulations need to be conducted on larger plots 766 

because of the predominance of rill erosion [Moody and Martin, 2001; Benavides-Solorio 767 

and MacDonald, 2005; Robichaud, 2005; Pietraszek, 2006].  The incorporation of a 768 

rainfall erosivity threshold and a nonlinear relationship between rainfall erosivity and 769 

sediment yields would be the simplest and most powerful way to improve the ability of 770 

RUSLE to predict post-fire sediment yields.  771 

 772 

5.5.  Model Errors in Disturbed WEPP and Potential Improvements 773 

An analysis of model errors is much more difficult for Disturbed WEPP because 774 

it has so many interacting parameters and controlling equations.  Previous studies have 775 
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shown that WEPP under-predicts annual runoff from forested areas [Covert et al., 2005] 776 

and underestimates high rill detachment values [Elliot et al., 1991; Zhang et al., 2005], 777 

but these studies did not indicate how these errors would affect the predicted sediment 778 

yields.  WEPP also incorrectly predicts storm patterns and the resulting errors in 779 

predicted sediment yields can range up to 47% [Zhang and Garbrecht, 2003].  A 780 

comparison of predicted post-fire sediment yields across the western U.S. showed that 781 

WEPP generated unrealistically high values in wetter areas [Miller and MacDonald, 782 

2005].  An explicit evaluation of each of the individual parameters and equations is 783 

needed to determine which components are causing the low R2
eff values for the individual 784 

hillslopes, and this would require an extensive, coordinated research effort.  Section 5.5.1 785 

discusses the effective hydraulic conductivity and rill erodibility, as these are two of the 786 

most sensitive parameters in Disturbed WEPP, and section 5.5.2 discusses the validity of 787 

the assumed vegetative recovery sequence. 788 

 789 

5.5.1.  Effective Hydraulic Conductivity and Rill Erodibility 790 

Previous studies have shown that predicted sediment yields in Disturbed WEPP 791 

are very sensitive to the effective hydraulic conductivity (Ke) and rill erodibility (Kr) 792 

[Nearing et al., 1990; Tiscareno-Lopez et al., 1993].  These are the two main parameters 793 

that are altered to simulate burned conditions 794 

[http://forest.moscowfsl.wsu.edu/fswepp/docs/distweppdoc.html].   795 

For agricultural and rangeland areas, Ke and Kr are empirically estimated from 796 

soil properties [Alberts et al., 1995].  The Ke and Kr values for burned forests are based on 797 

field measurements from several fires in the western U.S. [Robichaud, 2000, 2005].  In 798 
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Disturbed WEPP the baseline Ke value for a sandy loam soil burned at high severity is 16 799 

mm h-1, and this is about twice the observed threshold of 8-10 mm h-1 for generating 800 

overland flow and sediment from severely burned sites in the Colorado Front Range 801 

[Moody and Martin, 2001; Kunze and Stednick, 2006; Pietraszek, 2006].  This baseline 802 

Ke is then reduced according to the soil rock content and percent surface cover, but we 803 

could not manually reduce the Ke values in Disturbed WEPP to determine how this 804 

would affect our predicted sediment yields.  Simulations using the WEPP model showed 805 

that a 50% reduction in Ke increased the predicted sediment yields from recently burned 806 

hillslopes by 2-2.5 times.  Reducing the baseline Ke in Disturbed WEPP would greatly 807 

improve predictions for hillslopes that produced more than 1 Mg ha-1 yr-1, as the mean 808 

measured sediment yield was about double the predicted mean.  A separate study on the 809 

Hayman fire is attempting to measure rill erodibility and how Kr values change over time 810 

[P. R. Robichaud, USDA Forest Service, pers. comm., 2005], but more studies are needed 811 

to better predict Ke and Kr values after burning for different soil types and post-fire 812 

conditions.   813 

There also may be a limit on the extent to which Disturbed WEPP can adequately 814 

represent post-fire conditions, as the interface was explicitly designed to minimize the 815 

number of user inputs.  It is not clear whether the limited number of user inputs is 816 

sufficient to accurately estimate Ke, Kr, and the other parameter values needed to 817 

represent the full range of post-fire conditions.  At least in the short term, the 818 

performance of Disturbed WEPP is probably constrained more by the lack of data for 819 

model calibration than the limitation on the number of user inputs.  The lack of 820 

calibration data also will constrain the ability of the full WEPP model to accurately 821 
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predict post-fire sediment yields despite its much greater flexibility in terms of user 822 

inputs.  823 

 824 

5.5.2.  Rate of Recovery 825 

Disturbed WEPP accounts for the decline in post-fire sediment yields over time 826 

by specifying a sequence of treatments (i.e., vegetation types) for sites burned at high and 827 

low severity, respectively (Table 2).  The different treatments trigger changes in Ke, Kr, 828 

and other parameters in the underlying WEPP model.  The assumed recovery sequence 829 

for burned areas is based on fires in the northern Rocky Mountains [P. Robichaud, USDA 830 

Forest Service, pers. comm., 2005], but the rate at which sediment yields return to pre-831 

fire conditions varies with climate, vegetation type, site conditions, and the amount and 832 

timing of precipitation.   833 

In eastern Oregon, for example, sediment yields dropped by one or two orders of 834 

magnitude from the first to the second year after burning due to rapid vegetative regrowth 835 

[Robichaud and Brown, 1999].  In the Colorado Front Range, sediment yields from high 836 

severity burns are just as high or higher in the second summer after burning because 837 

severely-burned sites still average less than 40% surface cover and the second summer is 838 

often wetter than the summer of burning [Benavides-Solorio and MacDonald, 2005; 839 

Pietraszek, 2006].  Our work and other studies show that 3-4 years are needed for post-840 

fire sediment yields from high severity burns to decline to near-background levels 841 

[Morris and Moses, 1987; Moody and Martin, 2001; Pietraszek, 2006; Wagenbrenner et 842 

al., 2006].  Plots with coarse-textured soils have noticeably slower rates of vegetative 843 

recovery and a correspondingly slower decline in post-fire sediment yields [Benavides-844 
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Solorio and MacDonald, 2005; Pietraszek, 2006], and this can be attributed to the lower 845 

water holding capacity. 846 

The burned areas used to develop and calibrate Disturbed WEPP typically have a 847 

more mesic climate than the mid-elevation forests in the Colorado Front Range [P. 848 

Robichaud, USDA Forest Service, pers. comm., 2005], and these conditions facilitate a 849 

more rapid vegetative recovery.  Our results show that a one year delay in the assumed 850 

recovery sequence improves the overall performance of Disturbed WEPP (Table 3), and 851 

nearly all of this improvement occurred in the third year after burning (Table 4).  To 852 

more accurately model post-fire conditions, Disturbed WEPP should be modified to 853 

allow for different recovery sequences, and these could be input by the user, or 854 

programmed into Disturbed WEPP as a function of the user-selected climate station, soil 855 

type, and percent rock content.   856 

 857 

5.6.  Accuracy of Individual Hillslope Predictions versus Grouped Hillslopes  858 

Both RUSLE and Disturbed WEPP were much more successful in predicting 859 

mean sediment yields from groups of hillslopes than predicting sediment yields from 860 

individual hillslopes.  The measured sediment yields from groups of plots were highly 861 

variable, as the mean CV was 93% for sediment yields from the high severity sites in 862 

each fire for each year after burning.  Other studies have shown a similar degree of 863 

variability in sediment yields from replicated plots [e.g., Wendt et al., 1986; Boix-Fayos, 864 

et al., 2007].  The underlying causes of this high variability include: within-plot 865 

variability in rainfall, infiltration, and soil properties; and between-plot variations in 866 

micro-topography and the spatial distribution of soil properties, rills, and surface cover 867 
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[Wendt et al., 1986; Reid et al., 1999; Boix-Fayos et al., 2007].  Neither model can be 868 

expected to represent all of these factors, as RUSLE is a lumped model at the hillslope 869 

scale and Disturbed WEPP can only divide a hillslope into two uniform planes.  Hence 870 

replicated plots generally will have nearly identical parameterizations and little variation 871 

in predicted sediment yields [Nearing, 1998].   872 

Our results show that for each group of hillslopes, the predicted variability in 873 

sediment yields was typically only about half of the observed variability.  Averaging 874 

sediment yields across groups of hillslopes reduces both the relative and absolute 875 

variability, and this reduction in variability should increase prediction accuracy.  If the 876 

observed variability in sediment yields from replicated plots is considered random 877 

[Nearing, 1998], a stochastic component may be needed to model the potential range in 878 

post-fire sediment yields, and the predicted sediment yields should be represented by a 879 

probability distribution instead of a single value [i.e., Robichaud, 2005].   880 

The lower accuracy of the Disturbed WEPP predictions for individual hillslopes 881 

also can be attributed to the fact that we were comparing the sediment yields for 882 

individual years against the predicted mean value using 50 years of simulated climate.  883 

The simulated climate is based on the monthly rainfall and number of wet days, but the 884 

50-year average includes both wet and dry years and cannot necessarily be expected to 885 

perfectly match the sediment yield measured from a particular site for a given year.  The 886 

difference in sediment yields between a single year and a 50-year average is another 887 

reason why a probabilistic approach is needed for predicting sediment yields.  888 

The use of more spatially-explicit models also cannot be expected to improve 889 

prediction accuracy in the present study, as most topographic and soil survey data will 890 
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still not have the necessary spatial resolution given the typical size of our hillslope plots.  891 

For practical reasons, users generally will not be able to measure and represent all of the 892 

controlling factors for each hillslope on a spatially explicit basis.  Similarly, one cannot 893 

expect to incorporate all of the small-scale variations into management-oriented, 894 

deterministic, and user-friendly models such as RUSLE and Disturbed WEPP.  In most 895 

applications model accuracy will be limited by both the availability and the resolution of 896 

the necessary input data.  The implication is that model users may need to adjust their 897 

expectations of model performance, and explicitly recognize that most models will better 898 

predict sediment yields for average conditions than for individual sites. 899 

 900 

6.  Conclusions 901 

Post-fire sediment yields predicted by RUSLE and Disturbed WEPP were 902 

compared to 252 plot-years of data collected from 83 burned hillslopes from six wild and 903 

three prescribed fires in the Colorado Front Range.  The correlations between the 904 

predicted and observed sediment yields for individual hillslopes were quite low for both 905 

RUSLE (R2=0.16) and Disturbed WEPP (R2=0.25).  Both models tended to substantially 906 

over-predict sediment yields that were less than 1 Mg ha-1 yr-1, and under-predict 907 

sediment yields that were larger than 1 Mg ha-1 yr-1.  Increasing the soil erodibility factor 908 

to account for post-fire soil water repellency did not improve the performance of the 909 

RUSLE model.  The performance of Disturbed WEPP was slightly improved by 910 

imposing a one-year delay in the assumed sequence of vegetative recovery.  Both models 911 

were able to much more accurately predict mean annual sediment yields when the 912 

hillslopes were grouped by fire or burn severity (R2 = 0.54 to 0.66).   913 
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There are two sets of inherent limitations to using RUSLE for predicting post-fire 914 

sediment yields in forested areas.  Most importantly, the linear structure of RUSLE is 915 

inconsistent with the observed rainfall erosivity threshold for initiating post-fire erosion, 916 

and with the nonlinear increase in sediment yields with increasing erosivity.  Second, 917 

burning at high severity greatly alters soils and surface cover, but the resulting increases 918 

in the K and C factors are too small to account for observed increases in sediment yields. 919 

Disturbed WEPP under-predicts high-magnitude sediment yields for recently burned high 920 

severity sites in the Colorado Front Range because the assumed effective hydraulic 921 

conductivity is too high and the vegetation recovery is too rapid.   922 

Both RUSLE and Disturbed WEPP are limited in their ability to predict post-fire 923 

sediment yields from individual hillslopes because we cannot realistically measure and 924 

represent all of the temporal and spatial variability in the factors and processes that 925 

control post-fire sediment yields.  Both models can more accurately predict mean post-926 

fire sediment yields for groups of hillslopes.  Model users should be aware of the inherent 927 

limitations to model performance and consider the absolute magnitude of the prediction 928 

errors when making management decisions. 929 
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 1266 

Table 1. List of the fires, years monitored, primary vegetation type, mean elevation of the study plots, number of rain gages, and 1267 

number of hillslope plots by burn severity.  Year 1 is defined as the year of burning and an asterisk indicates a prescribed fire. 1268 

  

Fire Date Years monitored Primary Mean elevation Number of
burned  post-burning vegetation type (m) rain gages High Moderate Low

Big Elk Aug 02 2-3 Lodgepole pine 2670 1  3 2 1
Hayman Jun 02 1-3 Ponderosa pine 2280 4 23 1 0
Schoonover May 02 1-3 Ponderosa pine 2210 1  6 0 0
Hewlett Gulch Apr 02 1-3 Ponderosa pine 1920 1  3 0 0
Bobcat Jun 00 1-5 Ponderosa pine 2160 3 13 2 1
Dadd Bennett* Jan 00 1-4 Ponderosa pine 2340 2  1 3 2
Lower Flowers* Nov 99 1-4 Ponderosa pine 2650 1  4 4 2
Crozier Mountain* Sep 98 2-5 Lodgepole pine 2300 1  4 1 0
Hourglass Jul 94 7-10 Lodgepole pine 2720 1  5 1 1

                Totals               15 62 14 7

Number of plots by burn severity

 1269 

 1270 
 1271 
 1272 
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Table 2. Sequence of vegetation recovery for sites burned at high and low severity as 1273 

assumed in Disturbed WEPP and the modified version (Disturbed WEPPm) tested in this 1274 

study.  Year 1 is the year of burning. 1275 

   
 High severity Low severity 
   Year(s)  Disturbed WEPP Disturbed WEPPm  
1 High severity fire   High severity fire  Low severity fire   
2 Low severity fire   High severity fire  Short grass           
3 Short grass           Low severity fire  Tall grass             
4 Tall grass             Short grass          Shrub                 
5 Shrub                  Tall grass            5-year old forest  
6 5-year old forest   Shrub                 5-year old forest  
7 to 15 5-year old forest   5-year old forest  5-year old forest  
>15 20-year old forest 20-year old forest 20-year old forest 

 1276 
 1277 
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Table 3. Validation statistics for the standard and modified versions of RUSLE and Disturbed WEPP for individual and grouped 1278 

hillslopes. 1279 

RUSLE RUSLEm

Disturbed 
WEPP

Disturbed 
WEPPm RUSLE RUSLEm

Disturbed 
WEPP

Disturbed 
WEPPm

R2 0.16  0.14 0.25 0.27 0.56 0.54 0.59 0.66
R2

eff 0.06 -0.26 0.19 0.23 0.52 0.31 0.53 0.65

RMSE (Mg ha-1 yr-1) 6.46  7.48 5.99 5.84 3.56 4.25 3.50 3.03

b (slope) 0.24  0.38 0.24 0.35 0.54 0.90 0.50 0.68

a (intercept) (Mg ha-1 yr-1) 1.40  2.08 1.38 1.72 0.57 0.72 0.81 0.83

Individual hillslopes Grouped hillslopes

 1280 
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Table 4. R2
eff values for different times since burning for the standard and modified versions of RUSLE and Disturbed WEPP for 1281 

individual and grouped hillslopes. 1282 

Years since 
burning RUSLE RUSLEm

Disturbed 
WEPP

Disturbed 
WEPPm RUSLE RUSLEm

Disturbed 
WEPP

Disturbed 
WEPPm

1 -2.84 -10.09 -0.39 -0.39    -0.19    -5.86   -1.03    -1.03

2  0.04    0.00  0.10  0.10     0.36      0.46    0.43     0.64

3 -0.02   -0.02  0.06  0.19     0.22     0.22    0.37     0.52

4  0.17    0.17 -0.03 -0.01     0.13     0.13  -0.35    -0.28

5-10 -9.72   -9.72 -9.59 -9.59 -60.4 -60.4  -7.72 -24.1

Grouped hillslopesIndividual hillslopes

 1283 

 1284 
 1285 
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Table 5.  Summary of the results from different RUSLE and WEPP validation studies. 1286 

Study Land use Location Model Measurement 
time scale

R2       R2
eff

Tiwaria et al. (2000) Agriculture Eastern and central U.S. RUSLE Annual 0.62           0.60
" Agriculture Eastern and central U.S. RUSLE Mean annual 0.75           0.72
" Agriculture Eastern and central U.S. WEPP Annual 0.43           0.40
" Agriculture Eastern and central U.S. WEPP Mean annual 0.72           0.71

Spaeth et al. (2003)1 Rangeland Western U.S. RUSLE Minutes nd -2.18 to -0.33
Yu et al. (2000) Agriculture (bare) Queensland, Australia WEPP Monthly 0.63          -0.47

" Agriculture (mulched) Queensland, Australia WEPP Monthly 0.63           0.45
" Agriculture (conventional pineapple) Queensland, Australia WEPP Monthly 0.69          -0.05
" Agriculture (bare) Queensland, Australia WEPP2 Monthly 0.94           0.91
" Agriculture (mulched) Queensland, Australia WEPP2 Monthly 0.76 -1192
" Agriculture (conventional pineapple) Queensland, Australia WEPP2 Monthly 0.62           0.28

Elliot (2004) Forest harvest and fires Western and southeastern U.S. Disturbed WEPP Varies 0.64        nd
Soto and Díaz-Fierros Scrubland (unburned) Northwest Spain WEPP4 Varies 0.92           0.92

      (1998)3 Scrubland (prescribed fire) Northwest Spain WEPP4 Varies 0.67           0.61
" Scrubland (wildfire) Northwest Spain WEPP4 Varies 0.59           0.03

nd=no data
1Data from Spaeth et al. (2003) are based on rainfall simulations; all other studies are from unbound or bound plots 
2Calibrated infiltration and erodibility parameters
3Statistics were calculated from data in Soto and Diaz-Fierros (1998)
4Vegetation growth and decomposition were calibrated to match measured values

 1287 

 1288 
 1289 
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Figure Captions 1290 
 1291 
 1292 

Figure 1.  Location of the nine fires where sediment yields were measured and the two 1293 

weather stations used in Disturbed WEPP (names in italics). 1294 

 1295 

Figure 2.  A typical set of sediment fences used to measure hillslope-scale sediment 1296 

yields from a convergent hillslope.  Photo taken one month after the Hayman fire. 1297 

 1298 

Figure 3.  A) Percent surface cover versus time since burning for each plot.  B) 1299 

Calculated values of the RUSLE C factor versus time since burning for each plot. 1300 

 1301 

Figure 4.  A) Predicted sediment yields for each plot using RUSLE versus the observed 1302 

values.  B) Predicted sediment yields for each plot using RUSLEm versus the observed 1303 

values.  The solid line is the 1:1 line and the dashed lines are the 95% confidence 1304 

intervals defined for replicated agricultural plots [Nearing, 1998, 2000; Nearing et al., 1305 

1999]. 1306 

 1307 

Figure 5.  A) Mean of the predicted sediment yields using RUSLE for each group of plots 1308 

versus the mean of the observed values.  B) Mean of the predicted sediment yields using 1309 

RUSLEm for each group of plots versus the mean of the observed values.  The solid line 1310 

is the 1:1 line and the dashed lines are the 95% confidence intervals defined for replicated 1311 

agricultural plots [Nearing, 1998, 2000; Nearing et al., 1999]. 1312 

 1313 
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Figure 6. A) Predicted sediment yields using Disturbed WEPP for each plot versus the 1314 

observed values.  B) Predicted sediment yields using Disturbed WEPPm for each plot 1315 

versus the observed values.  The solid line is the 1:1 line and the dashed lines are the 95% 1316 

confidence intervals defined for replicated agricultural plots [Nearing, 1998, 2000; 1317 

Nearing et al., 1999]. 1318 

 1319 

Figure 7. A) Mean of the predicted sediment yields using Disturbed WEPP for each 1320 

group of plots versus the mean of the observed values.  B) Mean of the predicted 1321 

sediment yields using Disturbed WEPPm for each group of plots versus the mean of the 1322 

observed values.  The solid line is the 1:1 line and the dashed lines are the 95% 1323 

confidence intervals defined for replicated agricultural plots [Nearing, 1998, 2000; 1324 

Nearing et al., 1999]. 1325 
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 1327 

 1328 

Figure 1.  Location of the nine fires where sediment yields were measured and the two 1329 

weather stations used in Disturbed WEPP (names in italics). 1330 
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 1332 
 1333 
 1334 
 1335 
Figure 2.  A typical set of sediment fences used to measure hillslope-scale sediment 1336 

yields from a convergent hillslope.  Photo taken one month after the Hayman fire. 1337 
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Figure 3.  A) Percent surface cover versus time since burning for each plot.  B) 1343 

Calculated values of the RUSLE C factor versus time since burning for each plot. 1344 
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Figure 4.  A) Predicted sediment yields for each plot using RUSLE versus the observed 1350 

values.  B) Predicted sediment yields for each plot using RUSLEm versus the observed 1351 

values.  The solid line is the 1:1 line and the dashed lines are the 95% confidence 1352 
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intervals defined for replicated agricultural plots [Nearing, 1998, 2000; Nearing et al., 1353 

1999].1354 
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Figure 5.  A) Mean of the predicted sediment yields using RUSLE for each group of plots 1357 

versus the mean of the observed values.  B) Mean of the predicted sediment yields using 1358 

RUSLEm for each group of plots versus the mean of the observed values.  The solid line 1359 
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is the 1:1 line and the dashed lines are the 95% confidence intervals defined for replicated 1360 

agricultural plots [Nearing, 1998, 2000; Nearing et al., 1999].1361 
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Figure 6.  A) Predicted sediment yields using Disturbed WEPP for each plot versus the 1365 

observed values.  B) Predicted sediment yields using Disturbed WEPPm for each plot 1366 

versus the observed values.  The solid line is the 1:1 line and the dashed lines are the 95% 1367 
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confidence intervals defined for replicated agricultural plots [Nearing, 1998, 2000; 1368 

Nearing et al., 1999]. 1369 
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Figure 7.  A) Mean of the predicted sediment yields using Disturbed WEPP for each 1372 

group of plots versus the mean of the observed values.  B) Mean of the predicted 1373 

sediment yields using Disturbed WEPPm for each group of plots versus the mean of the 1374 

observed values.  The solid line is the 1:1 line and the dashed lines are the 95% 1375 
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confidence intervals defined for replicated agricultural plots [Nearing, 1998, 2000; 1376 

Nearing et al., 1999]. 1377 


