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Abstract. Many forests and their associated water resources are at increasing risk from large and severe wildfires due to
high fuel accumulations and climate change. Extensive fuel treatments are being proposed, but it is not clear where such
treatments should be focussed. The goals of this project were to: (1) predict potential post-fire erosion rates for forests and

shrublands in the western United States to help prioritise fuel treatments; and (2) assess model sensitivity and accuracy.
Post-fire ground cover was predicted using historical fire weather data and the First Order Fire Effects Model. Parameter
files from the Disturbed Water Erosion Prediction Project (WEPP) were combined with GeoWEPP to predict post-fire

erosion at the hillslope scale. Predicted median annual erosion rates were 0.1–2Mg ha�1 year�1 for most of the
intermountain west, ,10–40Mg ha�1 year�1 for wetter areas along the Pacific Coast and up to 100Mg ha�1 year�1 for
north-western California. Sensitivity analyses showed the predicted erosion rates were predominantly controlled by the

amount of precipitation rather than surface cover. The limited validation dataset showed a reasonable correlation between
predicted and measured erosion rates (R2¼ 0.61), although predictions were much less than measured values. Our results
demonstrate the feasibility of predicting post-fire erosion rates on a large scale. The validation and sensitivity analysis

indicated that the predictions are most useful for prioritising fuel reduction treatments on a local rather than interregional
scale, and they also helped identify model improvements and research needs.
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Introduction

Many forests in the western USA are more susceptible to large,

high-severity wildfires because of increased fuel accumulations
from fire suppression (Agee 1993; Keane et al. 2002) and cli-
mate change (Flannigan et al. 2000; Westerling et al. 2006).
Areas burned at high severity are of particular concern because

of their high potential for flash floods and surface erosion
(Forrest and Harding 1994; Neary et al. 2005). Post-fire
increases in runoff and erosion can severely degrade water

quality and reduce reservoir capacities (Tiedemann et al. 1979;
Moody and Martin 2001; Neary et al. 2005).

To combat this risk, the USDAForest Service and other land-

management agencies have initiated fuel reduction programs,
but the areas needing treatment far exceed the available funding
(GAO 1999; Sampson et al. 2000; GAO 2007). Hence, there is a

need to assess and compare the relative priority for fuel reduc-
tion treatments on a spatially explicit basis. Previous large-scale
erosion mapping projects have utilised conceptual empirical
models such as the Universal Soil Loss Equation or the Revised

Universal Soil Loss Equation (RUSLE) (MacDonald et al. 2000;
Miller et al. 2003; Brough et al. 2004), or locally derived

categorical equations (e.g. Fox et al. 2006). However, it is
questionable whether these largely empirical models should
be extrapolated to conditions for which they have not been
calibrated (Larsen and MacDonald 2007).

The primary objective of this project was to develop and
apply a spatially explicit procedure for predicting first year post-
fire surface erosion rates across a large geographic area. The

study area consisted of the forests and shrublands in the
continental western United States, and our modelling goal was
to use existing data and procedures that could be consistently

applied across the entire region. A series of additional objectives
were identified during model development and application, and
these included: (1) evaluating the sensitivity of predictions to

key input parameters; (2) validating predicted values against
measured values; (3) identifying key limitations to the consis-
tency and accuracy of the predicted values; and (4) identifying
specific modelling and research needs.
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The following sections successively present our modelling
approach, the development and compilation of the input data,
modelling results, a sensitivity analysis and a discussion of key

issues and possible improvements. The effect of uncertainties in
the input parameters on model predictions can be evaluated
through the exposed mineral soil equation and the results of the

sensitivity analysis, but the absolute quantification of input and
prediction errors is hampered by the lack of field data for the
diverse landscapes found in the forested lands of thewesternUS.

Nevertheless, the approach and results presented here are
already providing guidance to resource managers through sev-
eral different risk-assessment projects. We hope the results and
ideas presented in this paper will further stimulate efforts to

better predict post-fire effects in fire-prone areas.

Modelling approach

Soil erosion due to water depends primarily on the amount of
surface cover, slope length, slope steepness and the amount and

intensity of rainfall (Renard et al. 1997; Pietraszek 2006). Soil
texture and topographic convergence are other important para-
meters (Renard et al. 1997; Benavides-Solorio and MacDonald

2005). For convenience and simplicity, the term ‘erosion’ in the
present paper is used to refer to both the predicted soil loss at the
hillslope scale (,1–15 ha) and measured sediment yields at
scales of 0.01–4 ha.

The focus of this paper is on surface erosion from rainsplash,
sheetwash and rilling, as these are the most common and
widespread causes of post-fire erosion (Moody and Martin

2001; Pietraszek 2006). In certain geographic areas, such as
the rapidly rising mountains of southern California, debris flows
and dry ravel can be important (Krammes 1960; Gabet 2003;

Wohlgemuth 2003), and empirical prediction models have been
developed for debris flows in some areas (Cannon 2001).
At larger scales, channel erosion can be the dominant sediment
source (e.g. Moody and Martin 2001), but the data and models

needed to predict post-fire channel erosion are still in the
developmental stage (Montgomery and Dietrich 1989; Istanbul-
luoglu et al. 2002; Moody and Kinner 2006).

Given the present state-of the-art and geographic variability
in erosion processes, themost widely usedmodels for predicting
post-fire erosion are based either onRUSLE (Renard et al. 1997)

or the Water Erosion Prediction Project (WEPP) (Flanagan and
Nearing 1995; Laflen et al. 1997). Key inputs for both models
are climate, soils, ground cover and topography. RUSLE is a

conceptual empirical model that is widely used in agricultural
areas; its applicability to forested areas is uncertain because of
its focus on overland flow and the datasets used for calibration
and validation were primarily from agricultural and rangeland

plots (Renard et al. 1997).
WEPP is a process-based model that predicts runoff and

sediment yields from planar hillslopes and small watersheds up

to 2.5 km2, and these predictions are based on up to 100 years of
stochastically generated climatic data (Flanagan and Nearing
1995). The surface hydrology component of WEPP uses

climate, soils, topography and vegetation input files to
predict infiltration, runoff volume and peak discharge for each
simulated storm. Climate, soils and vegetation inputs are also
used to predict vegetative growth, litter accumulation and litter

decomposition. WEPP uses these inputs and predictions to
calculate both rill and interrill erosion as well as sediment
deposition (Flanagan and Nearing 1995). The physically based

nature ofWEPPmeans that several hundred parameters must be
specified to run the model.

Online interfaces, such as DisturbedWEPP (Elliot 2004) and

the Erosion Risk Management Tool, ERMiT (Robichaud
et al. 2007a), have been developed to facilitate the use of
WEPP in forested areas. The Disturbed WEPP interface

(http://forest.moscowfsl.wsu.edu/fswepp/, accessed 14 August
2011) was designed to simulate different forest conditions
and management scenarios, including sites burned at high and
low severity (Elliot 2004). To run Disturbed WEPP, the user

needs only to specify a few key input parameters, including soil
texture class, vegetation type, a climate station from the WEPP
database and a hillslope profile. The interface then generates all

of the additional parameters needed to run the WEPP model
(Elliot 2004), andDisturbedWEPP has been used tomodel post-
fire erosion in forested areas (Soto and Diaz-Fierros 1998;

Larsen and MacDonald 2007; Spigel and Robichaud 2007).
The relative accuracy of RUSLE and WEPP for predicting

post-fire erosion was evaluated by comparing measured and

predicted values for 83 hillslopes of 0.01–0.5 ha from nine
different fires in the Colorado Front Range (Larsen and Mac-
Donald 2007). The predicted values using Disturbed WEPP
(R2¼ 0.25) were more accurate than RUSLE (R2¼ 0.16), but

neither model was able to accurately predict erosion rates from
individual hillslopes. The high spatial variability between plots
meant the model predictions were much more accurate for the

mean erosion rate from groups of hillslopes burned at similar
severity in a given fire, and Disturbed WEPP was again more
accurate than RUSLE (R2 of 0.66 v. 0.54 respectively) (Larsen

andMacDonald 2007). Spigel and Robichaud (2007) also found
similar results by comparing the mean erosion rates rather than
from individual plots after the 2000 Bitterroot Valley fires in
Montana. These results imply that average erosion rates are

easier to model rather than trying to account for all the small-
scale variations after wildfires within surface conditions, soil
characteristics and other factors in each plot. Given these results

and the greater potential accuracy of physically based models
for predicting results outside the areas or conditions for which
they were calibrated, the present study used theWEPP model to

predict post-fire erosion rates.
The need to predict post-fire erosion rates across large areas

necessitated the use of the Geo-spatial interface for the Water

Erosion Prediction Project (GeoWEPP) (Renschler 2003). Geo-
WEPP facilitates the use of WEPP across large areas by
converting GIS data intoWEPP inputs, runningWEPP and then
compiling the results into a spatial map (Renschler 2003). Like

WEPP, GeoWEPP only predicts runoff and erosion from water-
sheds smaller than 2.5 km2 because it does not route sediment
through perennial stream channels. The present project used the

March 2004 version of GeoWEPP and the April 2005 version
of WEPP.

The primary inputs for GeoWEPP are climate data, plant–

management files (‘land use or land cover files’ inGeoWEPP), a
soils map, and a Digital Elevation Model (DEM) (Fig. 1). The
various plant–management and soil input files developed for
burned areas and used in the Disturbed WEPP interface were
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used to create the different sets of input parameters needed by

the underlying WEPP model. To maximise the comparability
and consistency of the results, the same sets of input files were
applied across the study area. These sets of input files allowed us

to spatially vary the soil type, rock content and vegetative cover
as described below.

Using this procedure, we were able to predict potential

erosion in the first year after burning for most areas covered
by forests and dense shrublands in the western USA (Fig. 2), or a
total area of ,650 000 km2. The resulting maps are available
through http://environmental-rs-modeling.com/erosion_maps.

html (accessed 18August 2011), and these predictions are already
being used to identify the relative risk tomunicipal water supplies
and aquatic resources in parts of Colorado, Washington, Oregon

and California. Some of the modelling issues identified in this
project have led to revisions in the underlying WEPP model, and
the approach developed here is being considered for similar

projects in other areas.

Development and compilation of input data

Subdividing the study area

The continental western USA was divided into 27 zones fol-

lowing the delineation being used by the LANDFIRE project
(Fig. 2) (The National Map LANDFIRE 2005; Rollins 2009).
This multiagency project is generating maps and data on vege-
tation, wildland fire regimes and fuel assessments across the

entire USA and it provided the seamless soils and topographic
data layers used in the present project (The National Map
LANDFIRE 2005; The Nature Conservancy et al. 2005; Rollins

2009). The spatial input data layers were converted to Universal

Transverse Mercator (UTM) coordinates as GeoWEPP requires

a coordinate system with positive values. The results were
projected back to the original LANDFIRE Albers projection for
viewing purposes.

Climate data

Climate input files were generated by CLIGEN (Nicks et al.

1995), which is the stochastic weather generation program

within WEPP (Flanagan and Nearing 1995). The climate data-
base in WEPP has more than 2000 weather stations in the USA,
including 739 stations in the study area. The data for each station
include the monthly means and statistical distributions of

maximum and minimum temperatures, number of wet days,
and the frequency distributions of precipitation amounts and
intensities. CLIGEN uses these data to generate climate input

files with up to 100 years of daily temperature and precipitation
data (Nicks et al. 1995; Yu 2002; Robichaud et al. 2007a).

GeoWEPP automatically identifies the climate station in the

WEPP database nearest each watershed outlet. Mean annual
post-fire erosion rates were calculated for the first 5 years of the
100 years of simulated daily weather data in order to reduce
computational timewhile still averaging some of the interannual

climatic variability. The validity of this truncation was tested as
part of the sensitivity analysis.

Cover percentage and plant–management input files

An important step in the modelling process was to predict the
amount of surface cover after a wildfire, as field studies have
shown the amount of surface cover (or conversely the amount of

bare mineral soil) is a dominant control on post-fire erosion

FireFamily Plus

Disturbed WEPP
parameters

Erosion maps

Climate forecast Plant–management files DEM 

STATSGO data

FOFEM 

Exposed mineral
soil

Climate data

NFDR-TH fuel moisture from 98–100% ERC 

CLIGEN

GeoWEPP

Soils map

Fig. 1. Schematic of the modelling process. Rectangles indicate input or output data, and the ovals are the models

used in this project. Each step was evaluated by examining key parameters and their effects on model outputs.

For climate and exposedmineral soil, see Fig. 5; for DEMand slope, see Figs 6 and 7; and for soils, see Fig. 8. (NFDR-

TH, National Fire Danger Rating Thousand-Hour fuel moisture values; ERC, Energy Released Component;

STATSGO, State Soil Geographic; FOFEM, First Order Fire Effects Model; WEPP, Water Erosion Prediction

Project; CLIGEN, Stochastic Climate Generator; DEM, Digital Elevation Model; GeoWEPP, The Geo-spatial

interface for the Water Erosion Prediction Project.)
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rates under a given climatic regime (Dissmeyer and Foster
1981; Robichaud and Brown 1999; Benavides-Solorio and

MacDonald 2005; Larsen et al. 2009). The amount of exposed
mineral soil after burning (EM) is a key parameter in the plant–
management input files, and this was predicted using an

empirical equation from FOFEM (First Order Fire Effects
Model) (Reinhardt et al. 1997; Reinhardt 2003) (Fig. 1). Surface
cover was then calculated as 100 minus EM percentage.

FOFEMpredicts EM percentage after burning fromNational
Fire Danger Rating Thousand-Hour (NFDR-TH) fuel moisture
values and fuel types. The FOFEM database includes typical
fuel loading values for different vegetation types, but it cannot

provide fuel moisture values because these vary over time
and space. We therefore had to calculate and map NFDR-TH
fuel moisture values for an assumed probability of severe

fire weather (i.e. the conditions under which an area would
likely burn).

NFDR-TH fuels are defined as dead plant material with a

diameter of 7.6–20 cm; the name signifies that it takes 1000 h for
these fuels to gain or lose 63% of their initial moisture content
(Fosberg et al. 1981). Daily NFDR-TH fuel moisture values can

be calculated from weather data for the previous 7 days and the
initial 1000-h fuel moisture content (Ottmar and Sandberg
1985). The required weather data are daily minimum and
maximum temperatures, daily minimum and maximum relative

humidities, and the duration of any precipitation events.
These data are collected by stationary and mobile RAWS
(Remote Automated Weather Stations) (National Fire and

Aviation Management 2005). Daily maps of the NFDR-TH fuel
moisture values are generated by the US National Interagency

Fire Center. These maps are produced by identifying the 12 fire
weather stations nearest to each 1-km grid cell, and then

weighting each of the 12 stations by an inverse distance squared
algorithm (L. Bradshaw, USDA Forest Service, pers. comm.,
2005).

Cumulative frequency distributions of archived weather data
were used to calculate NFDR-TH fuel moisture values for 987
fire weather stations located within the study area that had at

least 8 years of data from one location. The assumed NFDR-TH
fuel conditions at the time of burning were at 98–100% ERC
(Energy Released Component) (K. Ryan, USDAForest Service,
pers. comm., 2005), where ERC is the energy released per unit

area of flaming front. The ERC values depend on the NFDR-TH
fuel moisture values and fuel type as defined below and in
Burgan et al. (1998).

Twenty different fuel types were defined to represent the
major plant communities in theUSA (e.g. short-needle pinewith
normal dead fuel loads, hardwoods, or California mixed chap-

arral) (Burgan et al. 1998). Ten of these fuel types were needed
to represent the forest and shrubland communities in the study
area, and digital maps of these fuel types are available at a 1-km2

resolution (Burgan et al. 1998) (Table 1). The NFDR-TH fuel
moistures at 98–100% ERC were calculated for each of these
10 fuel types for each fire weather station using the FireFamily
Plus software package (USDA Forest Service 2002) (Fig. 1).

NFDR-TH fuel moisturemaps were generated for each fuel type
with the same inverse distance squared interpolation algorithm
used to map daily fuel moistures. The GIS layer of fuel types

(Burgan et al. 1998) was used to determine which fuel type was
appropriate for each 1-km2 cell in the study area, and the

CLIGEN stations
States
LANDFIRE zones

Partially completed
Completed

Forest Inventory Analysis

500

N

Kilometres

Fig. 2. LANDFIRE zones showing the areas that were successfully modelled. The grey areas are

forested according to the Forest Inventory Analysis (Zhu and Evans 1994).
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appropriate NFDR-TH fuel moisture for that fuel type was

clipped from the 10 NFDR-TH fuel moisture maps. The clipped
fuel moisture maps were then merged into a single map of
predicted NFDR-TH fuel moisture values at 98–100% ERC.

Some areas that were barren according to the GISmap of fuel
types (Burgan et al. 1998) had woody vegetation according to
the Forest Inventory Analysis (FIA) as derived from AVHRR

(Advanced Very High Resolution Radiometer) satellite data
(Zhu and Evans 1994) (Table 1). The vegetation in these areas
was assumed to be represented by fuel type G (short-needle pine

with heavy dead fuel loads), as this fuel type adequately predicts
ERC for many forests in the USA (Hall et al. 2003). The
spatially explicit NFDR-TH fuel moisture values were used to
predict EM percentage using Eqn 1 (Brown et al. 1985):

EM ¼ 94:3� 4:96� NFDR-TH ð1Þ

The predicted EM values were used to assign a surface cover

percentage to each 30-m grid cell in the study area.
As the modelling goal was to predict post-fire erosion in the

first year after burning, a series of WEPP plant–management

input files without growth and decomposition were developed to
maintain constant surface cover over the 5 years of simulated
weather (normally WEPP would simulate vegetation recovery

over time). Plant–management files were developed for each
2.5% increment of surface cover, and for each file, the initial
cover variables were specified to obtain the desired cover

percentage. The presumed lack of regrowth in the first year
after burning is justified as most areas burn in the summer or fall
(autumn), shortly before the wet or summer monsoon season,
and in at least some areas, sediment production per unit rainfall

erosivity is unchanged for the first 2 years after burning
(Shakesby et al. 1996; Larsen et al. 2009).

Soils data

Soil data layers from the LANDFIRE project (Rollins 2009)

were used to develop the soil input layers used in this project
(Table 1). The LANDFIRE soil layers were derived from
STATSGO (STATe Soil GeOgraphic) data (USDA 1991), and
included: maximum soil depth; rock fragments percentage

(.2.0mm); sand percentage; silt percentage; and clay per-
centage. The sand, silt and clay layers were used to classify
each soil pixel into one of the four soil texture classes in Dis-

turbed WEPP (sandy loam, loam, silt loam and clay loam).
Disturbed WEPP estimates other input parameters (e.g. effec-
tive hydraulic conductivity, soil albedo and rill erodibility) from

the soil texture class, and only four classes are used because
there are not enough data from forested areas to justify a more
detailed classification (Elliot et al. 2000).

The soil parameters in Disturbed WEPP also vary according

to whether a site burned at high or low severity. Burn severity
was classified from the map of EM values; grid cells with more
than 35% bare soil were assumed to have burned at high

severity, and grid cells with #35% bare soil were assumed to
have burned at low severity (Robichaud 2000). The combination
of four soil texture classes and two burn severities yielded a total

of eight soil classes.
Erosion rates inWEPP are affected by the percentage of rock

fragments (.2mm) until the proportion exceeds 50% (Elliot

et al. 2000). According to the STATSGO data, the soils in the
study area had from 0 to 85% rock fragments. We therefore
divided the soils into 27 rock-fragment classes using 2% incre-
ments; soils with more than 50% rock fragments were included

in the 50% class. The combination of four soil texture classes,
two burn severity classes, and 27 rock fragment classes necessi-
tated the generation of 216 soil input files.

Topographic data, watershed delineation, and processing

The LANDFIRE project provided a seamless 30-m DEM of
the study area derived from the National Map (USGS 2002)
(Table 1). GeoWEPP uses a topographic analysis software,
TOPAZ: Topographic Parameterisation (Garbrecht and Martz

1999), to delineate watersheds and create the slope files needed
to runWEPP. Required input parameters for TOPAZ include the
critical source area (CSA) and minimum source channel length

(MSCL). To be consistent with our modelling philosophy and
available data, we used the default values in GeoWEPP of 5 ha
for CSA and 100m for MSCL, and these values resulted in a

mean hillslope size of ,6 ha.
To more efficiently model the study area, GeoWEPP was

modified to run batch files (C. Renschler, State University of

New York at Buffalo, pers. comm., 2005). These batch files
were created in ESRI’s ArcInfo GIS (ESRI Inc., Redlands, CA)
software by first delineating watersheds based on the DEMdata,
and then clipping the surface cover and soil layers to match this

initial delineation. The predominant soil and surface cover
values for each hillslope determined which soil and plant–
management files were used in GeoWEPP. This processing

created some gaps in the output layer, and these were primarily
caused by the failure of TOPAZ to delineate watersheds in
flat regions. There also were some gaps near UTM boundaries

due to an inadequate buffer when reprojecting the data. Taken
together, these data gaps comprised from 10 to 30% of each
LANDFIRE zone.

To the extent possible, these gaps were filled by dividing the
unmodelled watersheds into smaller units and rerunning
GeoWEPP. The finer-scale delineation isolated the flattest
areas, which allowed the remaining watersheds to be

Table 1. Summary of the spatial data inputs used in this project

Spatial grid layers Resolution Source

STATSGO soil layers 30m The National Map LANDFIRE (2005)

Digital elevation model 30m The National Map LANDFIRE (2005)

Forest inventory analysis 1 km Zhu and Evans (1994)

Fuel type map 1 km Burgan et al. (1998)
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successfullymodelled. Because the second pass divided the area
into smaller units, approximately 1 h of processing time per
80 km2 was required using a personal computer in 2005 com-

pared with 280 km2 h�1 for the first pass. This generally
reduced the gaps in the output data to only 5–10% of the
modelled area; however, to save time, this was only done for

areas with forest or dense shrub cover. Modelling was comple-
ted for the 12 most heavily forested LANDFIRE zones in the
western USA over an 8-month study period (Fig. 2).

Sensitivity analysis

The sensitivity analysis evaluated the changes in predicted
erosion as a result of variations in climate, surface cover, slope

steepness, slope length, soil rock content, soil texture and length
of the simulated climate. The baseline scenario for these anal-
yses assumed a 60m-long hillslopewith a 30% slope, a loam soil

with 25% rock fragments, and 50% surface cover. The relative
effects of climate and surface cover were evaluated by sys-
tematically varying the surface cover from 20 to 100% for six
climate stations with widely varying mean annual precipitation

(MAP). The other sensitivity analyses were run for both a dry
and a wet climate. The dry climate was represented by the
Cheesman station in the Colorado Front Range, where the pre-

dicted 5-year MAP is 406mm. The wet climate was represented
by Strawberry Valley on the west slope of the Sierra Nevada in
California, where the predicted 5-year MAP is 2235mm. Each

sensitivity analysis used a 5-year simulated climate except for
assessing the effect of the length of the simulated climate on
predicted erosion rates. The combined effect of changing

the CSA and MSCL parameters was evaluated by rerunning
GeoWEPP for an 800-ha watershed in the Sierra Nevada of
California with exceptionally high predicted erosion rates.

Validation

Validation of the predicted erosion rates was severely limited by

the paucity of directly comparable field measurements. At the
time of this study, the two most extensive and readily available
datasets were: (1) hillslope-scale measurements from the Col-

orado Front Range, and (2) small-watershed sediment yields
from four western states.

The hillslope-scale erosion data from the Colorado Front

Range were collected from 50 different hillslopes immediately
after four wildfires that occurred in late spring or early summer
and two prescribed fires (Benavides-Solorio and MacDonald

2005; Pietraszek 2006). The mean contributing area for each
hillslope was ,0.1 ha, and sediment production was measured
with sediment fences similar to those of Robichaud and Brown
(2002). The measured sediment production from each hillslope

was averaged over the first 2 years after burning for two reasons.
First, vegetative recovery in Colorado is slow given the coarse-
textured soils and cool, dry climate, so post-fire erosion rates are

nearly identical for the first and second summers after burning
when normalised by rainfall erosivity (Benavides-Solorio and
MacDonald 2005; Larsen et al. 2009). Second, over 90% of the

post-fire erosion is generated by summer convective storms, and
in the Colorado Front Range, summer precipitation in the year of
burning is typically below average (Benavides-Solorio and
MacDonald 2005; Pietraszek 2006). Erosion is usually higher

in the second summer after burning than the first summer
(Pietraszek 2006). As it is not known if precipitation is generally
below normal in the first year after burning in other areas, the

bias in the field data due to the below-normal precipitation
relative to the predicted values was reduced by averaging the
measured erosion in the first 2 years after burning. Erosion rates

were also averaged for the hillslopes within each fire that burned
at high and moderate severity, as the measured hillslopes had
relatively consistent soils, slopes and ground cover, they were in

close proximity, and the hillslope areas were typically much
smaller than the modelled hillslopes. The measured mean
annual erosion values for each fire were compared with the
mean predicted erosion for the two or three hillslopes that

encompassed the field data from each fire.
The second dataset consisted of erosion data from six high-

severity-burned 1–13-ha watersheds in California, Colorado,

Montana and Washington (Robichaud et al. 2008). The sedi-
ment captured in large weirs at each watershed outlet was
periodically cleaned out, weighed and summed to yield annual

amounts. The outlet coordinates and characteristics of each
watershed were used to identify the nearest comparable mod-
elled hillslope. Aswith the first dataset, themean erosion rate for

the first 2 years of data from each watershed was compared with
the mean predicted value for the corresponding hillslopes.

Results

Predicted exposed soil and erosion rates

The predicted amount of EM ranged from 0 to 81% (Fig. 3). The

intermountain west and southern Rocky Mountains generally
had the highest amounts of EM and the lowest amounts of sur-
face cover after burning (Table 2a). In these areas, the mean

predicted EMafter burningwas,55–65%, and this decreased to
45–50% for the northern Rocky Mountains, eastern Oregon and
eastern Washington. Wetter areas along the northern Pacific
Coast had the lowest predicted EM and highest surface cover

values (Fig. 3; Table 2a). The lower EM values in Fig. 3 can be
attributed to the higher NFDR-TH fuel moisture values in areas
with more precipitation. The predicted post-fire surface cover

values within each LANDFIRE zone were relatively consistent,
as the coefficient of variation (CV) for the 1-km2 pixels ranged
only from 13 to 21% (Table 2a). More variability could be

expected with a finer-scale map of fuel types.
Predicted first-year erosion rates spanned a broad range

within and among the 12 LANDFIRE zones modelled in this

project (Table 2b; Fig. 4). Predicted erosion rates were typically
less than 5Mg ha�1 year�1 (5 t ha�1 year�1) for the Rocky
Mountains and interior west where mean annual precipitation
is often low and much of the precipitation falls as snow. The

lowest predicted mean erosion rate was 0.9Mg ha�1 year�1 for
zone 23, which is split between Colorado and Utah (Table 2b;
Fig. 4).

Mean predicted erosion rates were at least an order of magni-
tude higher along the Pacific Coast, with values ranging from
52Mgha�1 year�1 in western Washington to 155Mgha�1

year�1 for north-western California (LANDFIRE zones 1 and 3
respectively) (Table 2b; Fig. 4). The mean predicted erosion rate
for eastern Oregon (zone 7) was 28Mgha�1 year�1, which
effectively split the difference between the low values in the
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Fig. 3. Predicted percentage of exposed mineral soil after burning.
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intermountain west and the much higher values along the Pacific
Coast. The forests and shrublands in the Sierra Nevada of
California (LANDFIRE zone 6) also had a relatively high

predicted mean erosion rate of 47Mgha�1 year�1, and this zone
also had the highest hillslope-scale erosion rate of 2100Mgha�1

year�1 (Table 2b).
The distribution of predicted erosion rates within each

LANDFIRE zone was highly skewed as maximum values were
8 to 160 times the mean (Table 2b). LANDFIRE zones with
lower mean annual erosion rates (under 6Mg ha�1 year�1) were

all from drier interior zones where the mean was typically
3–9 times the median (Table 2b). The remaining wetter zones
on or near the coast (1, 2, 3, 6 and 7) all had mean annual erosion

rates over 28Mg ha�1 year�1 and the mean was 1–15 times the
median.

Some sharp spatial changes in the predicted post-fire erosion
rates that are not due to topography can be attributed to a sudden

change in the climate stations selected by GeoWEPP (Fig. 4).
These discontinuities were most pronounced in mountainous
areas, as these areas have fewer climate stations and there can be

large changes in the amount and type of precipitation between
adjacent stations.

Sensitivity analysis

Climate and surface cover

The first sensitivity analysis evaluated the effect of climate
and surface cover percentage on predicted erosion rates. There

was a very steep, non-linear decline in predicted erosion rates for
the three wetter climates as surface cover percentage increased
from 20 to 65%, and a much smaller decline as surface cover

increased from 65 to 100% (Fig. 5). For the three drier climates,
the relative decline in predicted erosion rates with increasing
cover was similar to the three wetter climates, though the

absolute range was smaller (Fig. 5). For each station, the sudden
decline at 65% surface cover was due to the shift from high to

low burn severity and the resulting changes in soil properties and

other input parameters. The non-linear decline in predicted
erosion with increasing ground cover is consistent with field
studies (e.g. Walsh and Voight 1977; Larsen et al. 2009).

A quantitative analysis of the climate stations with varying

MAP indicates climate has a greater effect on the predicted
erosion rates than surface cover percentage (Fig. 5). It is
important, however, to note that the predicted erosion rates

depend on the precipitation intensity and duration of individu-
ally modelled storms, not annual precipitation amounts. At 20%
surface cover (corresponding to the maximum predicted EM of

80% in Table 2a), the predicted erosion rate for Cheesman is just

Table 2. (a) Mean, standard deviation, minimum, maximum and coefficient of variation (CV) for the predicted amount of post-fire surface cover

(100% ] EM) based on 1-km2 pixels assuming 98]100% ERC. (b) Predicted hillslope erosion rates for each LANDFIRE zone where the modelling

was completed

EM, percentage exposed mineral soil; ERC, Energy Released Component (see text for details). See Fig. 2 for the location of the LANDFIRE zones; values

are rounded to reflect the likely uncertainty

(a) Post-fire cover (%)

LANDFIRE zones 1 2 3 6 7 10 15 16 19 21 23 28

Mean 70 69 49 41 53 52 36 36 57 54 37 45

Standard deviation 15 11 9 5 10 9 6 6 9 9 6 8

Minimum 33 38 30 25 28 28 20 20 33 33 20 23

Maximum 98 98 93 75 98 98 68 68 98 95 73 83

CV (%) 21 16 19 13 19 18 17 18 17 16 16 18

(b) Post-fire erosion (Mg ha�1 year�1)

LANDFIRE zones 1 2 3 6 7 10 15 16 19 21 23 28

Mean 52 88 155 47 28 2.1 5.3 2.4 2.3 1.6 0.9 1.3

Median 10 38 115 15 1.9 0.4 1.8 0.8 0.5 0.2 0.1 0.3

Standard deviation 96 134 141 84 64 4.1 8.6 4.8 4.3 3.6 1.8 2.7

Minimum 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 1500 1400 1200 2100 1200 330 120 220 38 45 62 100

CV (%) 190 150 91 180 230 200 160 200 190 230 200 210
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Fig. 5. Predicted erosion rates v. surface cover percentage for six climate

stations with mean annual precipitation values ranging from 330 to

2896mm year�1.
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under 4Mg ha�1 year�1 as compared with nearly 200Mg ha�1

year�1 for the wettest climate. Effective rainfall intensities

for these two stations were similar; which indicates that a
seven-fold increase in MAP resulted in a 50-fold increase
in erosion (Fig. 5). The type of precipitation also affects

predicted erosion rates, as the Santa Ana climate in southern
California yielded slightly higher erosion rates than the
Cheesman climate, even though the MAP for Santa Ana is
19% less than for Cheesman (Fig. 5). The lower erosion rates for

the Cheesman climate can be attributed to the fact that at least
one-third of the annual precipitation at Cheesman falls as snow
(Libohova 2004), and snowmelt causes very little post-fire

erosion (Benavides-Solorio and MacDonald 2005; Pietraszek
2006). These results confirm the relatively dominant effect of
precipitation on the predicted erosion rates, even when two

of the stations in Fig. 5 include substantial amounts of snow.

Slope steepness and slope length

An increase in slope percentage caused a nearly linear
increase in predicted post-fire erosion rates for slopes from

nearly zero to 30–40% for both the dry (Cheesman) and the wet
(Strawberry) climates (Fig. 6). The increase in predicted erosion
was progressively smaller as slopes increased beyond 40%. The

overall pattern was similar for both climates, but for the wet

climate the absolute erosion rates were ,35 times greater than
for the dry climate (Fig. 6).

An increase in slope length had a very different effect on the

predicted erosion rates for the dry climate than the wet climate
(Fig. 7). For the dry climate, the predicted unit area erosion rates
increased sharply as slope length increased up to ,100m,

increased more slowly as slope length increased to,260m, and
then declined slightly as slope length increased from 260 to 600m
(Fig. 7a). Plots of the predicted runoff against slope length showed
the decline in erosion is due to a decrease in unit area runoff and

sediment transport capacity with increasing slope length.
Under the wet climate, the predicted erosion rate initially

increased nearly linearly with slope length up to ,150m, and

then increased more slowly as the slope length increased from
,150 to 600m (Fig. 7b). The continued increase in erosion in
the wet climate can be attributed to the continuing increase in

runoff and sediment transport capacity as the contributing area
increased with slope length.

Rock fragment percentage and soil texture

Both the percentage of rock fragments in the soil profile and

soil texture class affected the predicted erosion rates (Fig. 8). For
the dry climate, the predicted soil loss always increased with soil

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60 80 100 120

Slope (%)

E
ro

si
on

 (
M

g 
ha

�
1  

ye
ar

�
1 )

E
ro

si
on

 (
M

g 
ha

�
1  

ye
ar

�
1 )

(b)

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

Slope (%)

Fig. 6. Predicted erosion rates v. slope percentage for: (a) a dry climate
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rock content, and this increase was most rapid as the rock content
increased from 0 to 10% and from 40 to 50% (Fig. 8a). The
overall pattern was similar for all four soil textures, although the

increase in erosion with increasing soil rock content was much
smaller for the clay loam than the other three soil types because
the clay loam has a low infiltration rate and low rill erodibility.

For the wet climate, the predicted erosion rate increased
rapidly as rock content increased from zero to either 5 or 10%
(Fig. 8b). Increasing the rock content to 50% reduced the

predicted erosion rates by ,50% for the silt loam and clay
loam, but had almost no effect on the predicted erosion rates for
the two coarser-textured soils. The rapid initial increase in
erosion with increasing rock content is attributed to a decrease

in infiltration due to a decrease in pore volume. Beyond 5 or 10%
rock content, the lower hydraulic conductivity for the finer-
textured soils causes WEPP to predict lower soil moisture

contents at the end of each day during wet periods, and the
resulting increase in soil moisture storage capacity reduces
surface runoff and erosion. The effect of increasing the amount

of rock fragments on the soil surface was not evaluated, but an
increase in rock cover should have a similar effect on erosion
rates to an increase in ground cover, as this will reduce rain-
splash, sheetwash and rill erosion (Bunte and Poesen 1994).

In the dry climate, the predicted erosion rates were very
similar for the silt loam, loam and sandy loam soils, but the

predicted erosion rates for the clay loam soil were almost 50%

lower (Fig. 8a). The lower erosion rates for the clay loam can be
attributed to its higher cohesion (Singer and Munns 2002). For
the wet climate, the predicted soil loss was two to four times

higher for the silt loam than the other three soil types (Fig. 8b),
and this can be attributed to the relative ease with which silt
particles can be detached and transported when there is more

rainfall and overland flow (Singer and Munns 2002).

Length of the simulated climate

Increasing the length of the stochastically generated climate
caused a similar pattern in the predicted erosion rates for both

the dry and wet climates (Fig. 9). At first, there were consider-
able fluctuations in the mean annual erosion rates as the length
of the simulation period increased from 1 to 20 years, and the

predicted mean erosion rate peaked at ,30–35 years. Mean
erosion rates then declined, and after ,45–50 years the length
of the simulation had little or no effect on the predicted soil loss

(Fig. 9). For both climates, there was a local maximum in the
predicted erosion rates at approximately 5 years, and this local
maximum was 78% of the long-term mean for the dry climate

and 93% of the long-term mean for the wet climate (Fig. 9). The
larger difference between the 5-year and long-term mean
erosion in the dry climate is due to the greater skew in the
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distribution of annual erosion rates, as the biggest storms in dry
climates generate proportionally more erosion than in wetter

climates (Haan et al. 1994).
These results demonstrate that the mean annual erosion

predicted using a 5-year simulated climate is a reasonable

compromise between computational time and accuracy. In
practice, the mean erosion from a 5-year climate record is more
likely to occur than the mean value calculated from a longer

climate record because the very wet years have such a low
probability of occurrence. Some studies also suggest that the
year of burning will have below-normal precipitation and hence

potentially lower erosion rates than the second season after
burning (Shakesby et al. 1996; Larsen et al. 2009).

Critical source area and minimum source
channel length

The effect of decreasing the critical source area (CSA) and
minimum source channel length (MSCL) was evaluated for an
800-ha watershed in the Sierra Nevada of California with a

relatively high mean erosion rate of 677Mg ha�1 year�1.
Decreasing the default CSA from 5 to 1 ha and the default
MSCL from 100 to 60m reduced the predicted mean erosion

rate by 53% to 319Mg ha�1 year�1 (Fig. 10). This decrease is
partly due to a reduction in hillslope size and hence hillslope
length. The lower CSA and MSCL values also increased stream

channel density, and the proportion of the watershed designated
as channels increased from 5.7% to nearly 16% (Fig. 10). These
results are consistent with a study showing that increasing the
CSA from 5 to 50 ha increased both hillslope length and

predicted erosion rates (Conroy 2005).

Model validation

The comparison ofmeasured and predicted erosion rates yielded
a strong positive correlation (R2¼ 0.61, P¼ 0.003), but the
predicted values were generally much lower than the measured

values (Fig. 11). The range of the predicted values alsowas quite
limited, as the highest predicted value for the validation sites
was only 4Mg ha�1 year�1. Although this value is larger than

the median predicted value for eight of the twelve LANDFIRE

(a) (b)

Mg ha�1 year�1

0–50
51–100
101–200
201–400
401–472
473–600
601–800
801–1000
1001–1200
1201–1235
1236–1400
1401–1800
1801–2200

1000

N

Metres
1000

N

Metres

Fig. 10. Effect of reducing the critical source area (CSA) and the minimum source channel length (MSCL) on

hillslope size and the predicted erosion rate for a watershed in California’s Sierra Nevada. In (a) CSA is 5 ha and

MSCL is 100m, and in (b) CSA is 1 ha and MSCL is 60m. The outlet is at �121.052688W and 39.5232848N.
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zones modelled in this project, it is much less than the median
predicted values for the fourwetter zones (Table 2, Fig. 4) where
there are almost no post-fire hillslope-scale erosion data that can

be directly compared with our predicted values (Moody and
Martin 2009).

Discussion

Concerns and potential improvements

The underlying modelling philosophy was to use existing

models and a consistent approach to demonstrate the feasibility
of predicting post-fire erosion at a large scale and to maximise
the comparability of the results. Several important concerns
were identified when assessing the results, and these included:

(1) higher than expected erosion rates in wetter areas, particu-
larly for areas burned at low severity (i.e. less than 35% bare
soil); (2) uncertainties in predicting the conditions underwhich a

given area will burn and the associated reliability of predicted
exposed mineral soil after burning; (3) spatial discontinuities
in the predicted erosion rates, particularly in mountainous

areas; (4) difficulties in validating the predicted erosion
rates; and (5) incorporating the frequency of burning to estimate
long-term post-fire erosion risks rather than short-term post-fire

erosion rates.

High erosion rates in wet areas

The predicted hillslope-scale erosion rates appear to be exces-
sivelyhigh in thewetter areas along thePacificCoast, particularly

LANDFIRE zones 1, 2 and 3. In LANDFIRE zone 3 in north-
western California, for example, the mean predicted post-fire
surface coverwas49%, and thepredictedmedian erosion ratewas

115Mgha�1 year�1. These values are high relative to the mean
maximumhillslopeplot values of 12Mgha�1 year�1measured in
the northernmost portion of zone 5 (Sampson 1944) and ,1
Mgha�1 year�1 for the Oakland fire just south of zone 3 (Booker

et al. 1993, 1995, cited inMoody andMartin 2009). The predicted
values also are much higher than suggested by qualitative field
observations, such as the limited amount of rilling and sediment

deposition after the 2002Biscuit fire in south-westernOregonand
north-western California (Bormann et al. 2005).

The high predicted erosion rates in wet areas relative to field

data and qualitative observations, plus the results of our sensi-
tivity analysis, have triggered additional evaluations of, and
improvements to, the WEPP model. More specifically, WEPP

was overpredicting surface runoff in wet areas, in part because
percolation below 200mm and lateral flowwere being routed as
a single output at the end of each daily simulation. If the top
200mm of soil became saturated, the infiltration rate dropped to

zero during the storm rather than to the saturated hydraulic
conductivity, and the resultant infiltration-excess overland flow
helped generate the very high predicted erosion rates. The

Disturbed WEPP Fortran code has been since modified to
resolve this problem, reducing the high predicted erosion rates
in wet areas. Other changes are being made to the plant–

management files in both the online versions of WEPP and
the Windows interface for WEPP.

To evaluate the effect of these changes, the models were
rerun for the 800-ha watershed (Fig. 10) using the March 2008

version of GeoWEPP, the October 2008 version of WEPP, and
new plant–management and soil input files designed to reduce
the frequency of saturation. These changes reduced the pre-

dicted mean erosion rate from 677 to 190Mg ha�1 year�1, or
72% (Fig. 12); similar reductions can be expected in other high-
rainfall areas.

There are at least two other ways to reduce the high predicted
erosion rates in wet areas. First, the CSA and MSCL could be
reduced, and this would reduce the predicted hillslope erosion

rates (Fig. 10) (Renard et al. 1997; Cochrane and Flanagan
2005). Both of these parameters should be lower in wet areas
owing to the greater amounts of runoff and higher drainage
densities. Field studies have shown that the contributing area

needed to generate surface runoff can drop dramatically after a
high-severity wildfire (Libohova 2004; Moody and Kinner
2006). The problem is that there are no simple, physically based

methods for determining the appropriate CSA andMSCL values
in response to the variations in climate, soils, vegetation and
burn severity across the entire study area (Moody and Kinner

2006). This is a key research need that could greatly improve the
relative and absolute accuracy of the predicted erosion rates.

A second possibility for reducing high erosion rates in wet

areas is to improve parameter accuracy in the plant–manage-
ment files. The modified plant–management files used in this
project yielded erosion rates that were consistent with measured
values from the Hayman wildfire in Colorado. Under the Chees-

man climate, there was no difference in the predicted erosion
rates between simulations using the plant–management
files modified to maintain 100% cover and the standard

plant–management file in Disturbed WEPP for a 20-year-old
forest. Subsequent analyses have shown that in a wet climate,
the predicted erosion rate for a fixed cover of 100% was several

times higher than the predicted erosion from the standard
plant–management file for a 20-year-old forest. More detailed
sensitivity studies are needed to determine the relative
importance of the different parameters in the plant–management

files, and these results should stimulate field studies to better
determine key parameter values for WEPP under different
conditions. In the meantime, the erosion values predicted

here are believed to be more valid on a relative rather than an
absolute scale and more valid within climatic regions, which is
consistent with other erosion models (e.g. Wischmeier 1976;

Renard et al. 1997).

Predicting the conditions for burning and exposed
mineral soil

A key assumption was that areas would burn at the 98–100th

percentile of ERC. This assumption is important because the
assumed ERC level affects the NFDR-TH fuel moisture values,
which then control the predicted EM after burning (Eqn 1). The

midpoint of the assumed ERC range is the 99th percentile, and
on average, these weather conditions should occur for slightly
less than 2 days in a 6-month fire season. In reality, wildfires can
occur under less extreme conditions because they also depend

on an ignition source, fuel loadings and topography, as well as
weather and fuel moistures (Sugihara et al. 2006).

The effect of assuming a more extreme ERC class of 99–

100% on the predicted EM values was evaluated for 14 fire
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weather stations using FireFamilyPlus version 3.0.5. The mean
increase in predicted EM was only 2%, and this would increase
the predicted erosion rate by 5–10% (Fig. 5). This increase in
erosion would yield a better validation in drier areas (Fig. 11),

but further increase the predicted erosion rates in wet areas
(Fig. 5).

A critical research need is to develop a better procedure for

predicting EM values after burning. Field data show the highest
predicted EMof 81% is substantially less than the values of 90%
or more that have been measured after high-severity fires in the

Colorado Front Range (e.g. Libohova 2004; Larsen et al. 2009)
and other parts of the Rocky Mountains (e.g. Robichaud et al.

2008). An increase in the bare soil percentage from 80 to 95%

would increase the predicted erosion rate by nearly 50% for the
Cheesman climate, which again would improve the validation
results (Fig. 11).

Efforts to validate the predicted EM values were hampered

by differences in the resolution of the predicted values (1 km2)
relative to the measured values (,5 ha). The extreme patchiness
of EM, particularly after low- and moderate-severity fires

(Robichaud et al. 2007b), makes it difficult to validate the
predicted EM values and accurately predict post-fire erosion.
An improved procedure for predicting EM after wildfires could

lead to higher EM values and more accurate erosion predictions
in dry areas, and possibly lower EM values and lower predicted
erosion rates in wet areas.

Spatial discontinuities in the predicted erosion rates

The sharp spatial changes in predicted erosion rates due to shifts
in the climate stations selected by GeoWEPP have been

addressed by the incorporation of PRISM and Rock:Clime
into GeoWEPP (Minkowski and Renschler 2008). PRISM
(Parameter-elevation Regressions on Independent Slopes
Model) uses a DEM, point sources of climatic data and other

spatial datasets to generate grids of climate data at a resolution of
4 km2 or finer (Daly et al. 1997). Rock:Clime (Elliot et al. 1999;
Scheele et al. 2001) uses elevation to adjust precipitation and

temperature values in mountainous areas, which would help
determine whether precipitation falls as rain or snow. A change
from rain to snow will greatly reduce post-fire erosion rates

(e.g. Benavides-Solorio and MacDonald 2005), and this could
help reduce the predicted erosion rates in some of the higher-
elevation areas in California, Oregon and Washington. PRISM

and Rock:Clime also could be used to improve the accuracy of
the NFDR-TH values, but this would have a much smaller effect
on the predicted erosion rates.

Difficulties in validating the predicted erosion rates

Model validation is a critical step in the development and use of
any model (Oreskes et al. 1994; Beven 2001), but the inherent
problems in validating hillslope-scale predictions of post-fire

erosion rates should not be underestimated. These include the
extent to which the simulated climate matches the weather
conditions at each site during the measurement period, the dif-

ferences in spatial scale between the predicted and measured
erosion rates, the resolution of the underlying GIS layers, the
matching of fieldmeasurements to a specificmodelled hillslope,

and the logistical difficulties in measuring post-fire erosion.
The measured erosion rates after a fire are highly dependent

on the weather experienced in the first 1–3 years after burning
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Fig. 12. Predicted erosion rates for a watershed in the Sierra Nevada of California: (a) as originally modelled in

this study; and (b) using theMarch 2008 version of GeoWEPP, theOctober 2008 version ofWEPP, and updated soil

and plant–management files.
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(Benavides-Solorio and MacDonald 2005; Moody and Martin
2009). The erosion rates predicted in the current study are
the annual means for a 5-year stochastic climate record,

and these values can differ from field measurements simply
because the weather during the field measurement period
is unlikely to match the stochastically simulated values.

Differences in weather can account for many of the random
differences between predicted and observed erosion rates, but
there are at least two possible sources of systematic bias.

First, the predicted erosion rates were based on the nearest
climate station in the WEPP database, but these stations are
typically in towns at lower elevations than the field sites. Hence,
these stations are likely to underestimate the amount of precipi-

tation and the predicted post-fire erosion rates. The second
potential bias is the tendency for precipitation to be below
normal in the year of burning (Shakesby et al. 1996; Pietraszek

2006). This second bias would reduce the measured erosion
rates relative to the values predicted usingmean climate data or a
stochastic weather sequence, and an adjustment for this bias

would help reduce the gap between the measured and predicted
erosion rates shown in Fig. 11.

Differences in spatial scale between the predicted and

measured values were a potential concern for validating the
hillslope plots in the Colorado Front Range. However, field data
from convergent hillslopes and small watersheds in the Hayman
and Bobcat fires in Colorado show that erosion rates are

relatively constant for plots ranging in size from a few hundred
square metres up to 4 ha (Larsen and MacDonald 2007). This
observation is consistent with the precept that most post-fire

sediment is derived from rill and channel erosion (e.g. Moody
and Martin 2001; Pietraszek 2006), as there is often a tremen-
dous headward extension of the channel network after a high-

severity fire (Libohova 2004; Moody and Kinner 2006). These
results indicate erosion rates after high-severity fires may not
follow the standard assumption of decreasing sediment yields
with increasing area as evidenced by most sediment delivery

ratios (Walling 1983) and predicted by WEPP for drier areas
(Fig. 7a). Additional work is needed to determine the relation-
ships between spatial scale and post-fire erosion rates for

different climatic regimes and fire severities, and incorporate
this knowledge into post-fire erosion models.

The USDA Forest Service watersheds and the modelled

hillslopes were similar in size, but it was difficult to precisely
match the measured watersheds to one or more modelled
hillslopes. The predicted erosion rates were relatively consistent

among neighbouring hillslopes adjacent to the field sites, so the
effect of any errors in spatially matching the modelled and
measured values should have little effect on the validation
results shown in Fig. 11.

DEM resolution can affect the predicted values and valida-
tion results because this can affect both slope length and slope
steepness, and these parameters directly affect predicted erosion

rates (Figs 6, 7). A 30-m DEM, as used in this project, under-
predicted hillslope steepness by 34% relative to a mean mea-
sured value of 23.8%, and a finer resolution 10-m DEM

underpredicted slope steepness by 21% (Yao 2009). For the
Cheesman climate, an underestimate of slope steepness by 34%
could result in a 30% underprediction of erosion. However, a
higher-resolution DEM will generally decrease slope length

(Cochrane and Flanagan 2005; Zhang et al. 2009), and this
would counteract the associated underestimate of slope
steepness.

The final and largest difficulty for validating the results is the
lack of field data, particularly in wetter areas. This problem will
not be easily resolved, as wildfires are inherently less common

in wetter environments. The paucity of post-fire hillslope-scale
erosion rate data in wet areas is immediately apparent in any
compilation of post-fire erosion data (e.g. fig. 1 in Moody and

Martin 2009). At the hillslope scale, rill erosion is the largest
sediment source in severely burned areas (Moody and Martin
2001; Pietraszek 2006); therefore, our validation only used
measurements that included erosion due to rilling. Thus, we

used weir and sediment fence data, but excluded point measure-
ments from erosion pins and small-scale measurements from
Gerlach troughs because these measurements typically do not

cover a large enough scale to capture rill erosion. We also were
not able to use the extensive post-fire erosion data from southern
California as the modelling for this zone was not completed

(Fig. 2).
The logistical issues of measuring post-fire erosion rates also

must be recognised. The gap between a fire and the first storm(s)

is often only a few days or weeks, and it is difficult to obtain the
necessary funding and personnel to establish study sites imme-
diately after a fire (Lentile et al. 2007). The spatial variability in
post-fire erosion rates means that replicated sites are needed to

obtain an accurate mean value, but replication at scales larger
than a hillslope is costly and difficult owing to problems of
accuratelymeasuring sediment yields at larger scales (Bunte and

MacDonald 1999; Edwards and Glysson 1999). These limita-
tions mean that large-scale, spatially explicit modelling efforts
will be difficult to validate, and that the results will necessarily

be more valid on a relative than an absolute scale.

Frequency of burning

The erosion rates predicted under this project are for the first
year after burning using a 5-year simulated climate, but there is

no consideration of the frequency of burning. Hence, the pre-
dicted erosion rates are largely a function of the amount of
precipitation and EM, even though the frequency of burning can
vary by an order of magnitude or more between climatic regions

and vegetation types. If the objective is to predict longer-term
risk to aquatic resources – such as domestic water supplies,
habitat for an endangered fish species or reservoir sedimentation

– the frequency of burning also must be considered, as this will
greatly lower the predicted erosion rates in wet areas.

To predict long-term post-fire erosion rates (Rlt, Mg ha�1

year�1), one must sum the probability of each different fire
severity (Pfs) over the period of interest times the associated
cumulative post-fire erosion for each fire severity (Efs, Mg ha�1)
divided by the period interval (T, years) (Eqn 2):

Rlt ¼
PðPfs � EfsÞ

T
ð2Þ

To calculateRlt, the frequency and severity of burning need to be
determined, which is problematic owing to changes in forest
structure and density, increased frequency of anthropogenic
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ignition sources and climate change (Elliott and Parker 2001;
Schmidt et al. 2002; Guyette and Dey 2004; Westerling et al.

2006). Then the cumulative erosion for each fire severity has to

be predicted.
Since the initial modelling was completed, the LANDFIRE

project has developed a spatially explicit fire frequency map for

the entire US (Rollins 2009). As a first step, the erosion rates
shown in Fig. 1 could be multiplied by these fire frequencies to
estimate the long-term mean erosion rate from burning without

having to estimatePfs andEfs for all locations. The problemwith
this approach is that fire severity varies with fire frequency.

An alternative would use the relative probabilities of low-,
mixed- and high-severity fires developed by the LANDFIRE

project (Rollins 2009). Multiplying these relative probabilities
times fire frequency would yield a recurrence interval for each
fire severity. The modelling process followed in the present

project could then be completed for each fire severity using
different assumed ERC values. Entering these probabilities and
erosion rates into Eqn 2 would yield a mean long-term predicted

erosion rate. The frequency of burning can also better guide the
allocation of resources for forest thinning among geographic
regions and forest types. Additionally, post-fire erosion could be

predicted by simply selecting the appropriate predicted erosion
rates using a map of fire severity.

Model applications

An important benefit of the work reported here is the suite of

logic and procedures developed for predicting post-fire erosion
over large geographic areas. The high cost of fuel treatments and
fire suppression is forcing government agencies in the US and
elsewhere to develop procedures for allocating funds in themost

cost-effective manner. Portions of this work have already been
used to assess the risk to domesticwater supplies in the Colorado
Front Range (D. Martin, US Geological Survey, pers. comm.,

2009) and reservoir sedimentation in Lake Hemet, CA. The
erosion predictions developed in this project also are being
incorporated into pilot efforts to quantify watershed risk in

the Pacific Northwest (D. Calkin, USDA Forest Service,
pers. comm., 2010). Finally, the predicted EM values were in-
corporated into large-scale efforts to predict post-fire debris

flows (S. Cannon, US Geological Survey, pers. comm., 2006).
The results from this study already have led to improvements

in the underlying WEPP model and identified key information
needs. Similar modelling efforts in other areas can help confirm

the results presented here and identify other research needs.
Over time, the absolute predictions should become more accu-
rate as additional information becomes available and the under-

lying models are improved.

Conclusions

This project developed and applied procedures to predict first-
year post-fire erosion rates for forests and dense shrublands in
the continental western USA to help prioritise fuel reduction

treatments. The modelling process first predicted exposed
mineral soil from historical fire weather data, a spatially explicit
map of fuel moistures at 98–100% ERC for the different fuel

types in the study area, and an empirical equation from the First

Order Fire Effects Model. The maximum predicted EM value
of 81% is less than the values of 90–95% observed after some
high-severity wildfires. Validation of the predicted EM values

was hampered by the coarse spatial scale of the predicted values
relative to fieldmeasurements, and the high spatial variability of
observed values. Percentage EM was combined with a 5-year

simulated climate, local soil information and a DEM to model
over 650 000 km2.

Mean predicted erosion rates ranged from less than

5Mg ha�1 year�1 in the Rocky Mountains and intermountain
west to 50–155Mg ha�1 year�1 for north-western California,
western Oregon and westernWashington. The limited field data
indicate a reasonable correlation between the predicted and

observed values for the Rocky Mountain region (R2¼ 0.61),
but the predicted values in drier climates were generally too low
in absolute terms. In wetter climates, the limited qualitative

and quantitative data indicate that the predicted erosion rates are
too high.

The predicted erosion rates were more sensitive to mean

annual precipitation than bare soil percentage, and this
helps explain why the predicted erosion rates in wetter areas
were much higher than expected. These and other results have

led to a series of improvements in the underlying WEPP
model and changes to the plant–management files used in
Disturbed WEPP.

The present study was successful in demonstrating that post-

fire erosion predictions can be done relatively rapidly over large
spatial scales, and in identifying key limitations and research
needs. Like most erosion models, the results are most useful in

relative terms and on a local scale rather than predicting absolute
values across different climatic zones. The procedures devel-
oped here can serve as a model for other areas, and the results

already are being used to determine which areas should have the
highest priority for fuel treatments, and to quantify risks to water
resources at the watershed scale. Additional studies and field
data are needed to: better understand and predict the amount of

exposed mineral soil after burning; improve predictions of post-
fire erosion, particularly in wetter areas; and account for the
frequency of burning to estimate longer-term post-fire erosion

rates.
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