USPPRP Monitoring: Results from 2003 and Plans for 2004

L.H. MacDonald, E. Brown, and Z. Libohova Dept. of Forest, Rangeland, and Watershed Stewardship Colorado State University

Overall Goal

Determine whether thinning causes changes in runoff, erosion rates, water quality, or channel morphology.

Objectives: Hillslope Scale

- 1. Monitor sediment production rates from thinned ("treated") and control swales;
- 2. Monitor sediment production rates from roads and assess the connectivity of roads to t he stream network;
- 3. Relate sediment production rates to precipitation and site characteristics.

Objectives: Watershed Scale

- 1. Monitor the effects of thinning on runoff in two small watersheds;
- 2. Monitor the effects of thinning on water quality and channel morphology in four small watersheds.

Initial Study Sites

Methods: Hillslope scale

- Monitor sediment production from paired swales;
 - 11 pairs in Upper Saloon Gulch;
 - 8 pairs in Trumbull.
- Monitor sediment production from road segments;
 - 5 segments in Upper Saloon Gulch;
 - 8 segments in Spring Creek;
 - 3 segments in Trumbull.
- Measure key site characteristics (e.g., contributing area, slope, and percent cover);
- Six recording rain gauges.

Sediment fence for a road segment: Spring Creek

Methods: Watershed Scale

- Continuous monitoring of runoff by installing H-flumes on Saloon Gulch ("treated") and Brush Creek ("control");
- Annual monitoring of channel characteristics on streams draining Trumbull, Saloon Gulch, and Spring Creek;
- Periodic monitoring of discharge and water quality on Trumbull, Saloon Gulch, Spring Creek, and Brush Creek;

Initial Results: Hillslope Scale

- Paired swales: 2001
 - No sediment was produced from any of the 22 swales in Upper Saloon Gulch;
 - Only 3 of 20 swales in Trumbull area produced sediment.
- Roads: 2001-2002
 - 16 of 20 road segments produced sediment in 2001; mean erosion rate was 1.5 kg m⁻²;
 - 13 of 20 road segments produced sediment in 2002; mean erosion rate was 0.8 kg m⁻².

Areas burned by the Schoonover and Hayman fires,

May-June 2002

Effects of Hayman Fire on Study Sites

- Majority of Saloon Gulch and Brush Creek catchments were burned;
- Trumbull and Spring Creek areas were not burned;
- Efforts temporary focused on measuring sediment production from the burned sites, and effectiveness of the rehabilitation techniques;
- Unique opportunity to compare pre- and postfire conditions.

Formerly unchannelled swale: Upper Saloon Gulch

Mean percent ground cover in Upper Saloon Gulch in 2001 (prior to burning) and 2002 (after the Hayman fire)

Sediment collected from an 11-mm Storm

Sediment production from paired swales in Upper Saloon Gulch: 21 July 2002 storm (11 mm in 45 minutes)

Channel cross-section in Saloon Gulch in 2001 and 2002 after the Hayman fire

Objectives: 2003

- Hillslope Scale:
 - Continue monitoring sediment production from thinned ("treated") and control swales in Trumbull;
 - Continue monitoring sediment production from roads;
 - Establish new sites to monitor the effects of forest thinning on sediment production rates;
 - Establish new sites to monitor sediment production rates from the roads in areas to be thinned.

Precipitation

- Variable over the study area;
- Amount of erosion depends on the intensity and magnitude of the precipitation events;
- Mean monthly rainfall in 2002 and 2003 was below the long-term mean for the area;

Rainfall for storm on 06 July 2002

Monthly rainfall in summer 2002 and 2003 vs. long-term mean at Cheeseman Reservoir

8/21/2003 8/28/2003

Swale in Trumbull after Thinning

Percent litter and downed wood before and after thinning

Sediment production from paired swales in Trumbull: 2003

Channel cross-section in Trumbull in 2001 (before thinning) and 2003 (after thinning)

New Sites: 2003

- Denver Water;
- Bear Mountain;
- Kelsey;
- Night Hawk.

Site	Pairs of Swales	Road Segments
Denver Water	3	1
Bear Mountain	5	0
Kelsey	4	2
Night Hawk	0	3

Denver Water Site

- 50-60% slopes;
- Three paired swales established in April 2003;
- Three treated swales thinned by Hydro-Axe in late April 2003.

Swale	Area (m ²)	% Disturbed
#2	2035	51
#4	888	41
#5	1149	38

Percent Cover Before and After Thinning: Paired Swales, Denver Water Site

Results from Denver Water Site: 2003

- None of the paired swales produced any sediment;
- Fence installed at confluence of four treated swales also captured no sediment;
- Fence on steep, highly-disturbed track produced 0.01 kg m⁻² and 0.07 kg m⁻² from 5.2 mm and 15.2 mm rainstorms, respectively.

Bear Mountain and Night Hawk Sites

- Bear Mountain:
 - 5 paired swales established in June 2003;
 - 5 swales thinned in
 December 2003 by Hydro-Axe;
- Night Hawk site:
 - 3 road fences installed in summer 2003;
 - Has not been thinned;
- Rain gauges installed at both sites in summer 2003.

Kelsey Site

- 4 paired swales established in June 2003;
- Scheduled for thinning early in 2004;
- 2 road fences installed in June 2003;
- One rain gauge installed in early summer 2003.

Summary of sediment production from paired swales: 2003

Site	Number of paired swales	Number of fences that produced sediment	Mean erosion rate (kg m ⁻²)
Bear Mountain	5	0	0
Denver Water	3	0	0
Kelsey	4	0	0
Night Hawk	0	0	0
Spring Creek	1	0	0
Trumbull	8	0	0
Upper Saloon	0	0	0

Percent cover on road segments: Spring Creek 2003

Percent cover on road segments: Summer 2003

Sediment production rates from road segments in Spring Creek, 2001-2003

Sediment production rates from road segments in other sites, 2001-2003

Summary of sediment production from road segments: 2003

Site	Number of road fences	Number of fences that produced sediment	Mean erosion rate (kg m ⁻²)
Spring Creek	13	13	0.54
Trumbull	4	4	0.58
Upper Saloon	2	2	0.86
Denver Water	1	1	0.08
Kelsey	2	2	0.16
Night Hawk	3	3	2.11

Road Connectivity Classes

(1) No sign of concentrated flow below the drainage outlet;

- (2) Concentrated flow present but extends for less than 20 m;
- (3) Concentrated flow extends for more than 20 m but stops more than 10 m from the edge of a stream;

(4) A continuous rill or sediment plume to a stream channel.

Road connectivity in three study sites

Tasks for 2004: Continue Existing Sites

- Continue monitoring sediment production and percent cover for 30 paired swales and 3 single fences;
- Continuing monitoring sediment production, percent cover, and drainage characteristics for 29 road segments;
- Assess road connectivity in new sites;
- Continue monitoring channel characteristics in burned and unburned catchments;
- Pray for large storm events.

Tasks for 2004: Possible New Work

Consider evaluating the effects of forest thinning on:
(1) Soil moisture;
(2) Soil nitrogen.

Effects of Thinning on Soil Moisture

- Soil moisture affected by reduced interception, change in root water uptake, change in radiation, and change in soil evaporation due to effects of mulch;
- Literature suggests thinning increases soil moisture, but this may not be true in drier areas;
- Relatively easy to monitor, but capital cost ~\$7000 for time-domain reflectometry.

Effects of Thinning on Soil Nitrogen

- Addition of mulch may reduce soil nitrogen levels and affect both tree growth and vegetative recovery;
- Monitor soil N using resin bags, measure tree ring growth, and surface vegetation;
- Compare sites with mulch and with mulch removed.

Conclusions (1)

- Thinning reduces live vegetation cover and increases percent bare soil;
- No detectable erosion, at least from smaller storms, even on steep slopes;
- Effect of thinning on erosion rates in from larger storms still unknown;
- Absence of runoff and erosion at the hillslope scale implies no change at the watershed scale;

Conclusions (2)

- Primary sediment source is unpaved roads, but in many cases the sediment will not reach the stream channel network;
- Wildfires increase runoff and erosion rates by several orders of magnitude;
- Effects of thinning on soil moisture and soil nitrogen have important implications for vegetative recovery and ecosystem functioning;
- Monitoring soil moisture has high capital costs while monitoring soil nitrogen less expensive.

Questions?