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If you know how long it's going to take, how much it will
cost, and what the results are going to be, it ain't
research.

(W. Marlatt, professor emeritus, CSU)

It has long been a goal of individuals working with
rivers to define and understand the processes that influence
the pattern and character of river systems. The differences
in river systems, as well as their similarities under
diverse settings, pose a real challenge for study. One
axiom associated with rivers is that what initially appears

complex is even more so upon further investigation.

(Rosgen, 1994)
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1. INTRODUCTION

This report summarizes the results of the project
"Validation of Water Yield Thresholds on the Kootenai National
Forest". The first phase of this project was sponsored by the
Montana Department of State Lands, but since early 1993 the work
has been supported directly by the Kootenai National Forest
(KNF). Detailed interim reports were submitted in December 1992,
June 1993, and November 1993, and a draft final report was
submitted in July 1995. Following comments from the KNF, the
final report -- principally Chapter 2 -- was extensively revised
and extended.

In the interest of space, not all of the information
contained in the interim reports is repeated here. 1In
particular, this report references two M.S. theses and several
journal articles that are in preparation, in press, or that have
already been published. Copies of these documents, except for
articles in preparation, have been provided to the KNF. Since
the total length of these theses and articles exceeds four
hundred pages, they also are not included in this report.

The work conducted under this project was organized around
three objectives. The first objective was to "Evaluate the
causative factors relating timber harvest and related activities
to increases in (the size of) peak flows." The basic purpose of
this task was to evaluate the effects of forest harvest on peak
flows, and then analyse local hydrologic data to estimate the
likely effects of forest harvest on runoff in the study region.
The implicit assumption was that the larger peak flows (e.g., the
uppermost 5-10% of the flow duration curve) are of primary
concern because only these flows are important for sediment
transport and controlling channel morphology. We also compiled
and analysed all the existing hydrologic in order to better
characterize the spatial variability within the study area and
assess the validity of the three hydraulic regions defined by the
KNF for peak flow analysis.

The second objective was to "Develop criteria for

determining the amount, degree, and type of impact attributable
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2

to peak flow increases." The basic concept behind this objective
is that adverse change in stream channel conditions are a primary
concern of land managers. Changes in water yield or peak flows
may in themselves be of limited interest, but these changes in
flow can have adverse effects on fish habitat, downstream
sedimentation, and riparian conditions. Each of these secondary
effects is of immediate concern to regulatory agencies and
related to the broader goal of sustainable ecosystem management.

To address this objective, we first reviewed the existing
literature on the effects of forest management on stream
channels, particularly changes in the size of peak flows. We
then designed a field study to sample and measure channel
characteristics across a range of conditions, channel types, and
management intensities. Following our initial sample of 57
reaches in summer 1992, we adjusted our procedures and focus
before sampling an additional 57 reaches in the summer of 1993.
This data set of 114 reaches was the basis for much of the work
under both objective 2 and objective 3 (defined below). These
data were also used to evaluate two stream classification systems
and the extent to which stream channel characteristics are
associated with the hydraulic regions used for peak flow analyses
by the KNF. The work on channel characteristics was summarized
in a M.S. thesis (Madsen, 1994) and two journal articles (one in
press and one in the final stages of preparation).

The third objective was to "Better characterize the peak
flow increase thresholds to be used as planning tools for future
timber harvest activities on the Kootenai N. F." This objective
is basically an integration and extension of the work conducted
under the first two objectives. The stream channel data
collected under Objective 2 were plotted against a series of
management variables. Of principal interest was the relationship
between water yield increase as predicted for each reach by
WATSED-PC (USFS, 1992) and the various channel response
variables. Channel characteristics were also plotted against a
series of other management variables obtained from WATSED-PC or
the data base used to run WATSED-PC. The basic intent was to

Page 7




OCR Document

Page 8



OCR Document

assess the relationships between management indices and stream
channel condition.

The following chapter summarizes the results obtained under
the first objective. Results obtained under Objectives 2 and 3
are integrated and presented in Chapter 3 of this report.
Chapter 4 discusses the implications of our results for
management and presents our recommendations.
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4. MANAGEMENT IMPLICATIONS AND RECOMMENDATIONS

4.1. Monitoring the Effects of Forest Management

From a legal perspective, the Clean Water Act requires land
managers to maintain the designated beneficial uses and meet the
appropriate antidegradation standard. Within the study area
coldwater fisheries is the designated beneficial use most
susceptible to forest management and thus of primary concern.
Bull trout occur throughout much of the study area and have been
designated as an indicator species by the USFS. Rieman and
McIntyre (1993) identified five habitat characteristics of
particular importance to bull trout, and these are channel
stability, substrate composition, cover, temperature, and
migratory corridors. Channel stability was not explicitly
defined, but Rieman and McIntyre focussed on the stability of the
channel bed and implied that high bedload transport, scour, and
aggradation were all detrimental to bull trout.

Although stream temperature was not directly addressed in
this study, both physical modeling and experimental evidence have
shown that the use of buffer strips should minimize adverse
changes in temperature (Beschta et al., 1987). Rieman and
McIntyre (1993) note that bull trout appear to prefer colder
water, and this implies that temperature increases should be held
to a minimum. The exact width of the buffer strip should be set
as a function of tree height, latitude, and topography, and
various authors suggest a width of approximately 0.5 times the
mature tree height or a maximum of approximately 30 m (Belt et
al., 1992; Castelle et al., 1994).

Cover is maintained by providing large woody debris and
minimizing channel infilling or aggradation. Recent fisheries
literature suggests the more wood the better, and
geomorphologists have noted a relationship between the number of
pools and the amount of large woody debris (LWD) (Montgomery et
al., 1995). Data from the present study also indicate increasing

pool density in pool-riffle channels with increasing amounts of
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LWD. Buffer strips slightly less than one tree height are

necessary to maximize the input of LWD (Robison and Beschta,
1990) .

Migratory corridors are beyond the scope of this study, but
the other important habitat charactersitics all relate to changes
in discharge and sediment supply. Table 3-21 summarized the
significant changes in the morphologic variables with one or more
of the management indices for each of the three channel types or
subtypes. The predominant response was a fining of the
substrate, particularly in pools. We also observed a significant
increase in the depth and cover of fine sediment in pools in the
pool-riffle reaches. Some substrate fining was also observed in
the step cross-sections in the colluvial step-pool reaches and
the riffles in the riffle-pool reaches. Both the pool-riffle and
the colluvial step-pool reaches showed a significant increase in
the amount of exposed bank with predicted water and sediment
yield increases. An increase in the amount of exposed bank was
not detected in the fluvial step-pool channels, but there was a
statistically significant decrease in step height.

The observed changes in substrate and sediment deposition in
pools can be directly related to the habitat requirements of bull
trout. Rieman and McIntyre (1993, p. 6) note that while there
probably is considerable variation in the sensitivity and
response of bull trout populations to a change in substrate, "any
increase in the proportion of fines in substrates should be
considered a risk to productivity of an environment and the
persistence of associated bull trout populations". The increase
in exposed bank is probably an important source of sediment, but
the absence of quantitative data on natural and anthopogenic
sediment sources makes it difficult to gquantitatively link forest
management activities to an adverse change in the designated
beneficial uses.

As discussed in Section 3.11, the relationships presented in
Table 3-21 need to be viewed with caution. First, we used a
weaker level of significance (0.10) because of the tremendous

variability in stream systems, the uncertainty in the management
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indices, and we wanted to be more inclusive than exclusive in
terms of identifying possible channel responses. Second, there
was considerable regional variation in the observed responses.
Third, we had relatively few reaches which were undisturbed or
minimally-disturbed, and this made it difficult to determine
reference conditions. We also cannot verify that our reference
conditions were representative, and this lack of
representativeness would make it more difficult to identify
significant channel morphologic responses to management. Fourth,
fourteen of the nine;een significant variables in Table 3-19 had
to be adjusted for the effects of one or more of the local
controls. Gradient was generally the most common control,
particularly for the particle-size variables, but runoff
efficiency, drainage area, and amount of large woody debris all
accounted for a significant proportion of the variability in some
of the response variables (Madsen, 1994). These local controls
generally explained more of the variability in some of the
response variables than the management indices. These data
plots, which were all presented in Madsen (1994), show a great
deal of scatter. Finally, the accuracy and relevance of the
management indices is largely unknown.

Despite these limitations, the present study presents strong
quantitative evidence for a change in key habitat variables with
increasing management intensity for the three common channel
types studied here. The reliability of these relationships is
enhanced by the consistency among the observed responses, as well
as the agreement with previous studies and basic principles of
fluvial geomorphology. However, the usefulness of these
relationships to set specific management guidelines is limited
by: (1) the variability within the relationships; and (2) much of
the variability in the response variables cannot be accounted
for.

In terms of monitoring, the results clearly indicate that
the focus should be on bed-material particle size, particularly
in pools. In downstream pool-riffle reaches one should also

evaluate the amount of fine sediment deposited in pools. 1In
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colluvial step-pool and in pool-riffle reaches the amount of
exposed bank appears to be another useful indicator of management
effects. We found no evidence of significant change in channel
dimensions, and only a weak significant relationship between the
predicted water yield increase and Pfankuch's (1978) channel
stability evaluation.

Oon the other hand, components of our proposed channel
condition assessment appeared to be strongly related to
management intensity. Our analysis suggests that the most useful
variables include the following: location of exposed banks,
extent of sediment deposits, sediment trap capacity, and
infilling of fine sediments. The procedure seemed to be more
useful in pool-riffle than fluvial step-pool channels, but this
may be partly due to the much smaller sample size for fluvial
step-pool channels. Again the consistency of these qualitative
or categorical responses with the quantitative data (Madsen,
1994) lends further credence to the basic trends.

The results of our study suggest that both quantitative and
qualitative procedures could be used for evaluating channel
condition and channel change. Quantitative methods would rely on
procedures, such as Wolman pebble counts, to track bed material
particle size, and the development of other, more rigorous
procedures to gquantify bank exposure or bank instability. With
regard to the former, several cautionary notes need to be
considered. First, particle size distributions can vary over
time due to variation in flows (Lisle, 1982; De Jong, 1992;
Ergenzinger et al., 1994). Second, particle size distributions
are typically very patchy, and there needs to be consistency in
the geomorphic unit being sampled and the methodology of
selecting particles. Third, there may be considerable observer
variability (Bevenger and King, 1995; Marcus et al., 1995; Wohl
et al., in press). Fourth, natural controls -- such as gradient,
drainage area, and runoff -- need to be taken into account. The
careful evaluation of all these factors will greatly enhance the

reliability of the data and resulting interpretations.

Page 13




OCR Document

179
We would also recommend additional studies to develop a

consistent and reliable procedure to quantify the amount of
exposed bank. Our ocular estimates were adequate for the
exploratory nature of the study because of the consistency in
observers over the two years of data collection. The same
approach is unlikely to be adequate when applied over time and
across large areas by a variety of personnel. A possible
quantitative technique would be to measure the total length of
exposed banks on each side of a sample reach and divide that
value by the reach length. Our data suggest that this would need
to be adjusted for runoff efficiency; the amount of large woody
debris, while not significant in our data set, may also be an
important controlling factor. A possible gualitative approach
would be to assess the presence or absence of exposed banks in
specific locations (e.g., straight reaches, outside of bends, or
localized in association with large woody debris).

Further testing and modification of our channel assessment
procedure could lead to an improved qualitative technique to
provide information on the: (1) likely sensitivity of a channel
to management activities; (2) current channel condition; and (3)
geomorphic processes at work. The use of a gualitative format
would avoid the problems of assigning numerical values to each
characteristic, weighting the importance of each characteristic,
and then calculating a single score which can be compared across
geographic regions and channel types.

The reality is that different channel types have differing
sensitivities to management. Pfankuch’s (1978) channel stability
rating depends in part on channel type (Myers and Swanson, 1990),
and the specific weighting scheme used in Phankuch (1978) has
never been justified. One thus can argue that the Pfankuch
rating is a number based on gualitative judgements. In this case
it would be much more honest to simply utilize a qualitative
system. Retaining the data as a series of qualitative judgements
would both facilitate and force an understanding of the
underlying condition and processes rather than relying on an

arbitrary, integrated index.
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4.2. Thresholds, Risk, and Management Guidelines

The establishment of specific management thresholds rapidly
expands into the arena of economic and social values. Key
questions =- such as how much change is acceptable, or how much
risk is acceptable -- do not have a technical answer. The plot
of exposed bank versus predicted peak monthly water yield
increase shows that a basin with minimal management can have the
same percent exposed bank as an intensively-managed basin (Figure
4-1). There is a clear and statistically significant trend, but
the noise in the data precludes designating a threshold that can
be applied in all cases. Support for a variety of thresholds
could be developed by selectively choosing the appropriate
variable, stream type, and value system. In many cases the trend
in our data appear to be due to a change in the variability as
much as a change in the absolute values.

Reviews of the effects of forest harvest on water yield
(Bosch and Hewlett, 1982) and the change in peak flows (Section
2.1) both suggest that 15-20 percent of a basin has to be
harvested in order to generate a detectable change in discharge.
Hydrologic theory would suggest that lesser cuts would still
yield a change in flow, but this is simply not detectable given
current measurement techniques and statistical procedures. A
similar problem confronts us with regard to setting limits on
management activities, except that there are the additional
complications of: (1) quantifying a variety of different
management activities over time and space using a common
currency; and (2) relating the change in a given channel
characteristic to a change in a designated beneficial use.

A review of the significant pool-riffle plots presented in
Madsen (1994) suggests a qualitative shift in the distribution of
the response variables when the predicted increase in peak
monthly water yield exceeds 6-8%. Similarly, there appears to be
a qualitative shift in the response variables from the step-pool
channels when the predicted increase in sediment yield exceeds
40-60 percent, or the ratio of predicted sediment to water yield

increase is around five.
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Figure 4-1. Plot of the adjusted amount of exposed bank versus the
predicted peak monthly water yield increase for the
complete pool-riffle data set.
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It's quite possible that none of these values has any
statistical significance, and it must be emphasized that the
values are highly dependent upon the coefficients and
relationships put into R1-WATSED. Nevertheless, they might
represent zones where the risk of adverse management effects
becomes detectable. If there is then an exceptional storm event
or unusually rapid snowmelt, one might expect such basins to have
more bank scour, road erosion, or sediment transport than if the
basin were in an unmanaged state.

Unfortunately we cannot separate out the risk due to
management activities from the risk due to natural events because
there are no data on the change in any of our response variables
with the natural variations in discharge or sediment supply.
Thus periodic measurements of key variables in relatively
undisturbed basins are urgently needed to both assess the natural
variability and evaluate the magnitude of response to natural
events. In the absence of such data the effects of management
are inextricably confounded with the unquantified effects of
natural processes. A risk-based assessment of channel change is
the only way to account for the unpredictability of future
climatic events, but this can only be done after we have data
relating channel response to the range of events of concern.

From a statistical perspective, the data presented here can
only be applied to the population of streams from which we
sampled. This means that our results can only be directly
applied to the three channel types in regions 2 and 3 in the KNF,
and the Tally Lake Ranger District on the Flathead National
Forest. In designing and executing this study, we explicitly
retained this geographic focus and our focus on a limited number
of channel types in order to maximize our chances of detecting
significant relationships between management indices and channel
morphology. The large amount of noise in our data, and the
statistical limitations of the sample size after stratifying by
channel type and hydraulic region, supports this decision to
focus our efforts.
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On the other hand, our understanding of hydrologic and
fluvial processes, combined with the results of studies in other
geographic areas, leads us to believe that the trends observed
here are likely to be more widely applicable. The similarity in
flow regimes suggests that the results from hydraulic region 2
could be relevant to hydraulic region 1, but this will also
depend on the similarity in other processes, such as erosion
rates.

Another issue is the choice of management indices to
characterize management intensity. The most reliable index is
the change in annual water yield, as that is based on numerous
paired catchment experiments. The other water yield indices are
less reliable, but their high intercorrelation suggests that one
index is nearly as good as another. Thus we would expect the
indices which were not evaluated, such as the predicted period
with at least 75% of bankfull discharge, to yield very similar
results to the predicted change in monthly peak water yield.
Certainly there is little reason to believe that the use of
another water yield index would substantially alter our basic
results.

The predicted increases in sediment yield are much less
reliable because we have little calibration data and only very
crude techniques to route sediment into and through the channel
network (e.g., USFS, 1981; Walling, 1983). Different
coefficients between the Kootenai and Flathead National Forests
resulted in large differences in predicted sediment yields
between otherwise similar basins. These results suggest that the
management indices derived from R1-WATSED, like most cumulative
effects models, are most useful as relative rather than absclute
indices. It should also be noted that use of the more absolute
indices, such as road density or percent area cut, generally did
not yield better correlations. Road density may be of limited
value because it represents only one management activity, and
percent area cut is limited because it does not account for

recovery over time.
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The problem of quantifying management is a long-standing
issue in forest management, and it is one that is not easily
resolved. R1-WATSED is preferable to the models using equivalent
roaded or clearcut areas (e.g., Cobourn, 1989) because it at
least separates the model for predicting changes in discharge
from the model for predicting changes in sediment yield. There
is still the problem of adding effects from different management
activities, and the location of the activities relative to the
location of interest. R1-WATSED considers the slope location of
the management activities when calculating the predicted impact,
but does not individually consider the location of each activity
within the basin. Yet most scientists would agree that a
sediment input from higher up in the catchment will usually have
less effect on downstream channel conditions than a similar input
closer to the reach of concern. The advent of GIS-based models
may help resolve the latter issue, but the complexity of any
quantitative cumulative effects model precludes true validation
(Oreskes et al., 1994). Thus we can expect some improvements in
the quantification of management indices, but the basic problem
of quantifying the predictive variable ("management") is unlikely
to be resolved.

An approach that completely avoids the issue of quantifying
management is to adopt a performance-based standard. In other
words, if a channel exhibits certain characteristics, regardless
of cause, then management activities in that basin should be
severely restricted. Our draft channel condition assessment
could potentially be used for this purpose, as it qualitatively
identifies a series of conditions that can be directly linked to
poor habitat quality for coldwater fish. The disadvantage of
such an approach is that it would allow all channels to be
degraded to the threshold of detectability.

4.3. Additional Research Needs
A number of applied research needs have already been
identified, and these include: (1) validation of R1-WATSED; (2)

development of an improved procedure to quantify bank erosion;
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(3) additional sampling of stream reaches to verify our
preliminary results; (4) evaluating change in channel
characteristics with natural events; (5) modifying and verifying
our proposed channel assessment procedure; and (6) improving the
management indices used to predict channel change. While all
these would provide better guidance to land managers, we believe
that the single most critical need is to evaluate the sources of
sediment supply.

The driving concern for this study was the effect of forest
management activities on discharge, and the basic objective -- as
expressed in the title of the study -- was to validate the water
yield thresholds currently in use on the KNF. However, the only
channel response variables which could be directly linked to a
change in discharge was the observed increase in exposed bank in
the pool-riffle and colluvial step-pool reaches. All the other
significant responses are consistent with an increase in sediment
supply rather than an increase in discharge. Even the increase
in percent exposed bank might be due to an increase in sediment
supply, but the absence of any significant change in width or
depth suggests that the primary cause is a change in the size of
peak flows.

There are several possible sources of the observed increase
in sediment, and these include: (1) surface erosion from roads
and cut units; (2) bed and bank scour in the downstream pool-
riffle reaches; (3) bed and bank scour in the upstream step-pool
reaches; and (4) mass movements. Since the management actions
necessary to minimize each source are different, the relative
importance of each source must be determined prior to the
development of appropriate management guidelines. If bed and
bank scour are the primary sources, then this would imply that an
increase in the size of peak flows should be of primary concern,
and the observed fining and pool infilling is simply a secondary
result of the change in peak flows. On the other hand, if the
primary sources are surface erosion or mass movements, then the

basic problem is an increase in sediment supply, and management
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actions should focus on minimizing these sources rather than a
change in the size of peak flows.

Since the project objective and design were intentionally
directed towards changes in flow, the data collected under this
project do not allow us to resolve this basic issue. We
therefore suggest that the first priority for future research
should be to construct an approximate sediment budget for several
catchments with an area of 10-20 square miles. Drs. Leslie Reid
and Thomas Dunne have recently published a guide to the
construction of sediment budgets (Reid and Dunne, 1996), and
discussions with several geomorphologists indicate that it might
be possible to analyse several catchments in one field season.
Ideally this would be done on a basin with some sediment yield
data, but this may not be essential. Until this is done managers
can't identify the true cause of habitat degradation, and this
severely limits their ability to develop effective BMPs, set
management guidelines, and design efficient monitoring programs.
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