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ABSTRACT

 

Predicting suitable habitat and the potential distribution of invasive species is a high
priority for resource managers and systems ecologists. Most models are designed to
identify habitat characteristics that define the ecological niche of a species with little
consideration to individual species’ traits. We tested five commonly used modelling
methods on two invasive plant species, the habitat generalist 

 

Bromus tectorum

 

and habitat specialist 

 

Tamarix chinensis

 

, to compare model performances, evaluate
predictability, and relate results to distribution traits associated with each species.
Most of the tested models performed similarly for each species; however, the generalist
species proved to be more difficult to predict than the specialist species. The highest
area under the receiver-operating characteristic curve values with independent
validation data sets of 

 

B. tectorum

 

 and 

 

T. chinensis

 

 was 0.503 and 0.885, respectively.
Similarly, a confusion matrix for 

 

B. tectorum

 

 had the highest overall accuracy of
55%, while the overall accuracy for 

 

T. chinensis

 

 was 85%. Models for the generalist
species had varying performances, poor evaluations, and inconsistent results. This
may be a result of a generalist’s capability to persist in a wide range of environmental
conditions that are not easily defined by the data, independent variables or model
design. Models for the specialist species had consistently strong performances, high
evaluations, and similar results among different model applications. This is likely
a consequence of the specialist’s requirement for explicit environmental resources
and ecological barriers that are easily defined by predictive models. Although
defining new invaders as generalist or specialist species can be challenging, model
performances and evaluations may provide valuable information on a species’
potential invasiveness.
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INTRODUCTION

 

Invasion of non-native plant species continues to be a high priority

issue for natural resource managers throughout the USA. The

impacts that these species have on the landscape include the loss

of native biodiversity (Rosentreter, 1994; Randall, 1996),

alteration of ecosystem processes (Vitousek 

 

et al

 

., 1997; D’Antonio

 

et al

 

., 1999; Mack 

 

et al

 

., 2000), and reduced availability of

resources (Busch & Smith, 1995; Olson, 1999; Si 

 

et al

 

., 2005).

Only a small percentage of plant species introduced to the USA

become invasive, and a species’ success is generally attributed to

species traits and the availability of resources that enable it to

survive and flourish within a system (Baker, 1974; Lodge, 1993;

Cronk & Fuller, 1995; Planty-Tabacchi 

 

et al

 

., 1996; Thebaud

 

et al

 

., 1996; Williamson & Fitter, 1996; Mack 

 

et al

 

., 2000; Lee,

2001; Stohlgren 

 

et al

 

., 2003; Py

 

s

 

ek & Richardson, 2007). The

success of an invasive species may be dependent on a single trait

that facilitates a competitive advantage under specific ecosystem

conditions or multiple traits that allow widespread dispersal

across environmental gradients. Given the potential range of

survival strategies associated with non-native species, and diverse

ecosystem characteristics across North America, identifying or

predicting attributes that drive or prohibit invasions can be

challenging.

The diversity of survival strategies exhibited by invaders has

led some researchers to categorize species as generalists or

specialists, and subsets within (e.g. dominant generalist,

subdominant generalist; Chong 

 

et al

 

., 2006). These categories are

loosely defined by the interaction between a species and its

environment. Although comparisons between generalist and
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specialist species are common in biological studies (Adler, 1999;

Arens, 2001; Bohn & Amundsen, 2001; Lambrinos, 2002), they

are rarely considered when forecasting invasions or testing model

applications (Seoane 

 

et al

 

., 2005; Chong 

 

et al

 

., 2006). Most studies

use a single model to make predictions for a species of interest

(Ficetola 

 

et al

 

., 2007; Zhu 

 

et al

 

., 2007), while model comparisons

tend to test multiple models for a single species (Phillips 

 

et al

 

.,

2006; Stockman 

 

et al

 

., 2006; Pearson 

 

et al

 

., 2007) or test individual

models for multiple species (Bonn & Schoeder, 2001; Thuiller

 

et al

 

., 2005). In any case, considerations of species traits or

dispersal strategies are extremely rare (Segurando & Araújo,

2004; Elith 

 

et al

 

., 2006). This is especially common with invasives,

where detailed species information is often lacking on autecology

and interspecific competition over large and small spatial

scales.

Alternatively, models are generally designed to identify ecosystem

characteristics that can predict habitat suitability on the

landscape, and broadly applied to different species (Phillips 

 

et al

 

.,

2004; Payne & Stockwell, 2006). The ‘one size fits all’ approach

may be applicable for species that have evolved within restricted

or native ranges, but may not always meet the challenges

presented by invasive species (Lee, 2001; Doyle 

 

et al

 

., 2003;

Saura-Mas & Lloret, 2005; Stohlgren 

 

et al

 

., 2005; Ellstrand &

Schierenbeck, 2006). Most invasive species are new arrivals

lacking sufficient residence time to define their ecological niche,

reveal biotic and abiotic interactions, or demonstrate species

traits that would characterize them as generalist or specialist species

(Chong 

 

et al

 

., 2006; Stayer 

 

et al

 

., 2006). As a result, predictive

models for new invaders are often believed to underestimate the

potential distribution and habitats at risk (Wilson 

 

et al

 

., 2007).

We hypothesize that model performance can be influenced by

species-specific traits and that the ecological niche of habitat

specialists can be better predicted than those that are characterized

as habitat generalists. As a result, models do not perform equally

with all species; however, model performance, whether weak or

strong, may provide resource managers and researchers with

clues on how a particular invader will interact with potential

habitats. To test our hypotheses, we selected five common

modelling methods to predict the potential distribution of two

highly invasive species; a habitat generalist (

 

Bromus tectorum

 

,

cheatgrass; Mack, 1981; Knapp, 1996) and a habitat specialist

(

 

Tamarix chinensis

 

, tamarisk; Horton, 1964; Everitt, 1980).

 

METHODS

Study area

 

Our study site is the Grand Staircase-Escalante National

Monument (GSENM), located in south-central Utah, USA.

The Monument covers an area of approximately 769,000 ha with

elevations ranging from 1160 m to 2620 m. High plateaus and

deeply incised canyons are characteristic of the landscape. The

climate of the region is generally temperate and arid with the

average annual precipitation approaching 250 mm, mostly

occurring during winter months. Mean summer temperatures

range from 16 to 32 

 

°

 

C, and winter temperatures range from –9

to 4 

 

°

 

C (National Climatic Data Center, 2003). Despite its

extreme climate, the Monument is rich in floral diversity and

vegetation types. Over 984 plant species have been recorded

within the Monument’s boundaries, of which 174 (19%) are

regionally endemic and 98 (10%) are non-native (W. Fertig,

unpublished data). Only a small proportion of the non-native

species exhibit invasive characteristics, while most do not

appear to pose a significant threat to the Monument’s diverse

ecosystems and vegetation types (Waters 

 

et al

 

., 2004).

 

Field data

 

For this study, we used four independent data sets collected by

the Bureau of Land Management (BLM), the Natural Resource

Ecology Laboratory (NREL) at Colorado State University, and

the US Geological Survey (USGS). BLM data sets included the

results from a Noxious Weeds Inventory (

 

N

 

 

 

≥

 

 24,000) conducted

by the BLM Utah State Office in 1997 (M. Benson, unpublished

data) and from the Rangeland Health Monitoring Program

(

 

N

 

 = 285) conducted by resource managers at the GSENM

between 1999 and 2003 (Pellant 

 

et al

 

., 2000). Data sets collected

by the NREL and USGS include a 6-year landscape-scale vegetation

assessment of GSENM (

 

N

 

 = 380) conducted between 1998 and

2004 (Waters 

 

et al

 

., 2004), and a research project titled Finger-

printing Biodiversity (

 

N

 

 = 380) conducted between 2005 and

2007 (T.J. Stohlgren & P.H. Evangelista, unpublished data). We

randomly chose a selected number of samples from each data set

to achieve balance between sample sizes and limit samples to

within the Monument’s boundaries (see Appendix S1 in Supple-

mentary Material). For 

 

B. tectorum

 

, we used a total of 366 sam-

ples (246 present and 120 absent) for training, and 450 samples

(218 present and 232 absent) for validation of the models (see

Appendix S2). For 

 

T. chinensis,

 

 a total of 449 samples (226

present and 223 absent) were used for training and 464 samples

(227 present and 237 absent) were used for validation of the

models (see Appendix S3).

 

Environmental variables

 

We generated six different environmental variables from a 10-m

Digital Elevation Model (DEM) in ArcGIS 9.1, Arc Toolbox

(ESRI, 2004) to represent resource availability and topographical

features on the landscape that may facilitate invasion (Davis

 

et al

 

., 2000; Stohlgren 

 

et al

 

., 2003). Each variable had a 10-m

pixel size and was generated in a grid format that extended over

the entire study area. All six candidate variables were considered

for each model and for both species. These variables were

overland distance to water, slope (degrees), solar insolation,

soil wetness index, eastness, and northness. A raster data set for

overland distance from water was generated using FloWS

Geoprocessing tools (version 1.0; Theobald 

 

et al

 

., 2006) and

slope was generated using Spatial Analyst in ArcGIS 9.1 (ESRI,

2004). A solar insolation grid was generated using the Shortwave

program developed by Kumar 

 

et al

 

. (1997). Soil wetness index

was calculated using the formula [

 

ln(A/tan 

 

β

 

)

 

], where 

 

ln

 

(.) is the

natural logarithm, 

 

A

 

 is the area drained per unit contour or
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specific area, and 

 

β

 

 is the topographical slope (Moore 

 

et al

 

., 1991;

Wolock, 1993). Eastness and northness were generated in ArcGIS

9.1 (ESRI, 2004) using the formulas 

 

Sin(A)

 

 and 

 

Cos(A)

 

, respectively,

where 

 

A

 

 is aspect in degrees (Guisan 

 

et al

 

., 1999; Gutierrez 

 

et al

 

.,

2005; Kumar 

 

et al

 

., 2006). Previous studies have demonstrated

that these landscape characteristics often play significant roles in

species distributions and patterns of invasions (Lambrinos, 2002;

Stohlgren 

 

et al

 

., 2003; Kumar 

 

et al

 

., 2006).

 

Statistical analyses and modelling

 

The first model tested was a simple envelope design that has

no statistical basis, but simply defines the parameters of the

independent variables for presence-only data (Envelope; http://

www.niiss.org/cwis438/gather/Envelope.php). For each presence

point, the value of each independent variable is extracted, with

the minimum and maximum values of all presence points

defining the probability range of occurrence. The highest

probability value for the Envelope model cannot exceed the

number of independent variables tested. We also tested maximum

entropy (Maxent, version 2.3.18; http://www.cs.princeton.edu/

~schapire/maxent/; Phillips 

 

et al

 

., 2004, 2006) and genetic

algorithm rule-set prediction models (Desktop GARP, version

1.1.6., http://nhm.ku.edu/desktopgarp/; Stockwell & Nobel,

1992; Anderson 

 

et al

 

., 2003) which have gained popularity

because of their ability to predict species occurrence with presence-

only data and small data sets. Finally, we tested two commonly

employed regression models; logistic regression (Evans 

 

et al

 

.,

2000; Pearce & Ferrier, 2000) and classification tree analysis

(Breiman 

 

et al

 

., 1984; Lewis, 2000), both of which require

presence and absence data. Both regression models were analysed

using 

 

systat

 

 software (version 10.0, Systat Software Inc., San

Jose, CA, USA). For logistic regression models, all variables were

assessed for multicollinearity and normality. The variables were

transformed using 

 

log

 

10

 

 +

 

1 where appropriate. Significance of

predictors in the logistic regression model was assessed at

alpha 0.05.

The performance of all the models was evaluated using

threshold-dependent and threshold-independent measures.

Threshold-dependent evaluation was measured by specificity

and sensitivity, and Cohen’s maximized Kappa (Cohen, 1960).

There are two possible errors that may occur in prediction

models: false-negatives (under-prediction) and false-positives

(over-prediction; Fielding & Bell, 1997). Using the independent

validation data for each species, we present the relative proportions

of these errors in a confusion matrix. Specificity, the proportion

of true-positive and false-positive absences, and sensitivity, the

proportion of true-positives and false- positive presences, are

reported for the best two models of each species as defined by the

area under the curve values described below. Overall accuracy

was calculated using the formula [(

 

a + b

 

)/

 

N

 

], where 

 

a

 

 is the

number of correctly classified absences and 

 

b

 

 is the number of

correctly classified presences, and 

 

N

 

 is the total number of

samples (Fielding & Bell, 1997).

Next, we used Cohen’s maximized Kappa (Cohen, 1960) to

measure the proportion of correctly classified points (i.e.

presence, absence) after accounting for the probability of chance

agreement. Kappa statistic values range from –1 to +1, where +1

would be perfect agreement and any values less than 0 would

indicate a performance no better than random (Cohen, 1960;

Allouche 

 

et al

 

., 2006). Landis & Koch (1977) ranked analysis

performances as poor when kappa values are < 0.40, good when

the kappa values range from 0.40 to 0.75, and excellent when

kappa values are > 0.75.

The threshold-independent evaluation required a receiver-

operating characteristic curve (ROC), where sensitivity is

plotted against 1 – specificity for all possible thresholds (Pearce &

Ferrier, 2000). From the ROC analysis, we calculated the area

under the ROC curves (AUC) using true presence and absence

observations to measure the probability that a random, positive

point falls within the predicted range of occurrence, and a

random negative point falls outside (Fielding & Bell, 1997). The

Maxent model generates AUC values using pseudo-random

absence points on its own (Phillips 

 

et al

 

., 2006), but we do not

report these because we chose to maintain consistency with all

models tested.

The independent variables used in the model comparisons

play different roles of importance in predicting the potential

habitat and distribution of each species. The Maxent, logistic

regression and classification tree models provide the contributions

of each independent variable. The evaluations cannot be directly

compared to each other, but are reported to serve as a general

guide for ranking the importance of each environmental variable

in model predictions.

 

RESULTS

Generalist species

 

Models tested for the habitat generalist 

 

B. tectorum

 

 generally did

not perform as well as those tested for the habitat specialist

 

T. chinensis

 

 (Table 1). Evaluation of model performances for the

 

B. tectorum

 

 training data showed that logistic regression was the

best with an AUC value of 0.590. The GARP and Maxent models

had slightly weaker predictive strength, while the Envelope

model had the lowest performance. The classification tree analysis

was unable to make any predictions using the independent

variables tested. Evaluation of model performances for the

 

B. tectorum

 

 validation data rank GARP the best with an AUC

value of 0.503 (Table 1) which is no better than random, and all

the models were within a range of 0.01 from each other. The

Maxent, Envelope, and logistic regression models had only

slightly weaker performances, respectively. For 

 

B. tectorum

 

, the

GARP model had an overall accuracy of 54.7%, while Maxent

was 54.0% (Table 2).

The predictive contributions of each independent variable for

 

B. tectorum

 

 were ranked differently for each model. The analysis

of variable importance provided by the Maxent program ranked

solar insolation as the most important contributor (55.9%);

slope as second (24.2%); and overland distance to water as third

(12.4%). For logistic regression, soil wetness index was the only

significant variable at 

 

P

 

 < 0.05.

http://www.niiss.org/cwis438/gather/Envelope.php
http://www.cs.princeton.edu/~schapire/maxent/
http://nhm.ku.edu/desktopgarp/
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Specialist species

 

For the specialist species 

 

T. chinensis

 

, the Maxent model per-

formed best with the training data, having an AUC value of 0.773

(Table 1). The logistic regression, classification tree, and GARP

models also performed strongly while the Envelope model

had considerably lower predictive performances than the other

models. Model evaluations using the validation data had higher

performances overall (Table 1). Logistic regression performed

the best with an AUC of 0.885 (Table 1). The GARP, classification

tree, and Maxent models performed equally well, while the

Envelope model performed poorly. The overall accuracy for the

two best models for 

 

T. chinensis

 

, logistic regression and classification

tree, was 84.7% and 87.2%, respectively (Table 2).

The predictive contributions of the independent variables for

the models of 

 

T. chinensis

 

 favoured overland distance to water for

the Maxent, logistic regression, and classification tree models.

Maxent ranked overland distance to water as the most important

contributing variable (82.1%), slope as second (8.3%), and soil

wetness index as third (2.9%). Logistic regression found

overland distance to water as the only significant predictor at

 

P

 

 < 0.05. Similarly, the classification tree analysis found overland

distance to water as the only predictor for 

 

T. chinensis

 

 and

split the tree at two different distances. Seventy percent of the

presence points (mean = 0.70, standard deviation = 0.45) occurred

when overland distance to water was < 314 m, and 

 

T. chinensis

 

was not found in the training data when the overland distance to

water was > 1731 m.

 

DISCUSSION

Predictability of a generalist versus a specialist

 

As a generalist species, 

 

B. tectorum

 

 has become widely distributed

throughout the GSENM and persists in a broad range of habitat

types and environmental conditions (Evangelista 

 

et al

 

., 2004;

Guenther 

 

et al

 

., 2004; Chong 

 

et al

 

., 2006; Crall 

 

et al

 

., 2006). Field

data collected during the landscape-scale vegetation assessment

found 

 

B. tectorum

 

 in 93% of the plots, making it the second most

common species recorded in GSENM (Waters 

 

et al

 

., 2004).

Therefore, it was not surprising to see that the models tested in

this study had difficulty in defining 

 

B. tectorum

 

’s ecological niche

or identifying specific landscape characteristics that may inhibit

the species’ distribution (Fig. 1). All the models had consistently

weaker performances for the habitat generalist 

 

B. tectorum

 

 than

for the habitat specialist 

 

T. chinensis

 

 (Table 1). Other modelling

efforts for 

 

B. tectorum

 

 (Alley 

 

et al

 

. 2004; Crall 

 

et al., 2006) and

Tamarix species (Davern, 2006; Morissette et al., 2006) have had

similar results. Some of the models, such as Envelope, appear to

have over-predicted the range of B. tectorum, which has been a

Table 1 Performances of different models for Bromus tectorum and Tamarix chinensis based on training and validation data evaluated by area 
under the curve (AUC) values and Cohen’s maximized kappa.

Model

B. tectorum T. chinensis

Training data Validation data Training data Validation data

AUC Kappa AUC Kappa AUC Kappa AUC Kappa

Envelope 0.513 0.034 0.499 –0.002 0.542 0.096 0.458 –0.073

Maxent 0.559 0.055 0.502 0.055 0.773 0.452 0.828 0.612

GARP 0.582 0.212 0.503 0.077 0.721 0.421 0.830 0.63

Classification tree n.a. n.a. n.a. n.a. 0.741 0.393 0.829 0.66

Logistic regression 0.590 0.151 0.495 0.029 0.744 0.416 0.885 0.694

n.a., not available.

Table 2 Confusion matrix tables for the two best models of Bromus tectorum and Tamarix chinensis with cut-off at maximized kappa value.

GARP (B. tectorum) Maxent (B. tectorum)

Logistic regression 

(T. chinensis)

Classification tree 

(T. chinensis)

Predicted

Correct

Predicted

Correct

Predicted

Correct

Predicted

Correct0 1 0 1 0 1 0 1

0 192 40 82.8% 219 13 94.4% 200 37 85% 187 50 78.2%

1 164 54 24.8% 194 24 11% 34 193 84.4% 29 198 87.2%

Overall 54.7% 54.0% 84.7% 87.2%

Cut-off thresholds 0.85 0.84 0.50 0.55



P. H. Evangelista et al.

Diversity and Distributions, 14, 808–817, Journal compilation © 2008 Blackwell Publishing Ltd 
812 No claim to original US government works 

concern with other generalist species (Dettmers et al., 2002;

Hepinstall et al., 2002; Seoane et al., 2005). However, given the

pervasiveness of B. tectorum, the predicted surface from

Envelope appears to match field observations better than the

more conservative model surfaces (Fig. 1).

In contrast, most of the models for the habitat specialist

T. chinensis had stronger predictive performances. This trend

might be expected because specialist species tend to have sharply

defined niches and environmental barriers that are easier to

distinguish by model analyses (Bohn & Amundsen, 2001; Caley

& Munday, 2003). In our model comparisons, overland distance

to water was the most significant independent variable in the three

models that provided predictive contributions of independent

variables, which further highlights the specialist nature of

T. chinensis that largely confines it to riparian systems.

Model performance and interpretation

Despite varying performances, we believe that all the models

tested still have promising applications in predicting suitable

habitat and the potential distribution of generalist and specialist

invasive species. The results from this study suggest that no single

model is superior in all circumstances (Table 1) supporting

reviews from other studies (Elith et al., 2006). Most of the models

we tested performed similarly with each species, suggesting that

the varying results between the generalist and specialist species

are likely correlated to species traits or the independent variables

tested. On average, the models for B. tectorum performed no

better than random, while the predictive contributions of each

independent variable tested for B. tectorum fluctuated considerably

between the Maxent and logistic regression models. In contrast,

most of the models for T. chinensis performed strongly. The

Maxent, logistic regression, and classification tree models

agreed that one independent variable (i.e. overland distance to

water) was highly significant in predicting the habitat specialist

T. chinensis.

Closer examination of the predicted surfaces for T. chinensis

suggests that Maxent performed slightly better at a finer scale

than the other models. For example, the lower portion of

Hackberry Creek is cradled by steep canyon walls that are

Figure 1 Predicted habitat and potential 
distribution of Bromus tectorum in the Grand 
Staircase-Escalante National Monument 
(A–D) and at a finer scale along the Hackberry 
Creek, Cottonwood Creek, and Paria River 
confluences (a–d; see inset). Models compared 
are Envelope (A, a), Maxent (B, b), GARP 
(C, c), and logistic regression (D, d).



Modelling invasion for a generalist and specialist species

Diversity and Distributions, 14, 808–817, Journal compilation © 2008 Blackwell Publishing Ltd 
No claim to original US government works 813

prohibitive to most plant establishment (Figs 1a–d and 2a–e).

Above the canyons are flat xeric landscapes dominated by Pinus

edulus (pinyon pine), Juniperus osteosperma (Utah juniper), and

Artemisia tridentata (big sage). Tamarix chinensis is absent from

these communities, and these communities are highly unlikely to

support future establishment of the specialist species (P.H.E.,

pers. obs.). The sensitivity of Maxent was able to distinguish

canyon walls from the riparian system, but incorrectly predicted

potential T. chinensis habitat on the xeric plateau above Hackberry

Creek. The logistic regression, classification tree, and GARP

models made coarser predictions and did not account for the

steep slopes of the canyon walls while predicting T. chinensis to

occur on the xeric plateaus.

Improved predicted surfaces for both species may have been

likely with inclusion of additional independent variables.

For example, T. chinensis models may be improved by including

variables related to stream flow, native species richness, or

climate (Horton, 1977; Brotherson & Field, 1987; Morissette

et al., 2006). Similarly, the performance of models for B. tectorum

may have been improved had variables for fire history, livestock

grazing, and recreational use been available (Evangelista et al.,

2004; Crall et al., 2006). Many studies have found that model

performance greatly relies on the particular independent variables

tested, spatial resolution, or inadequate field data (Suarez-

Seoane et al., 2002; Gibson et al., 2004; Barry & Elith, 2006). We

do not suggest that the independent variables selected for this

Figure 2 Predicted habitat and potential 
distribution of Tamarix chinensis in the 
Grand Staircase-Escalante National 
Monument (A–E) and at a finer scale along the 
Hackberry Creek, Cottonwood Creek, and 
Paria River confluences (a–d; see inset). 
Models compared are Envelope (A, a), Maxent 
(B, b), GARP (C, c), logistic regression (D, d), 
and (E, e) classification tree.
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study are completely representative of ecological niches for each

species; however, they are known to have significant influences

on invasive plant species in general (Stohlgren et al., 2003) and

were selected with consideration of our objectives in comparing

models and species.

When models perform strongly, it is generally indicative that

key variables associated with habitat suitability and species traits

were successfully identified for the analyses (Boyce et al., 2002;

McKenney et al., 2003; Gibson et al., 2004). It is also reasoned

that when models perform poorly, the analyses were lacking

significant variables to predict suitable habitats (Waters et al.,

2004) or relied on inconclusive field data (Hernandez et al., 2006;

Real et al., 2006). Although these are rational interpretations in

the model process, they are not easily corrected when assessing

risk or modelling distribution of invasive species. If model

performances are influenced by species traits (e.g. habitat

generalist or specialist), then a broader interpretation of results

may provide important insight into species traits, thus gauging

the potential distribution of new invaders. We suggest that

predictive models that perform poorly may not always be a

shortcoming in methodology, the independent variables

selected, or the completeness of occurrence data. An alternative

interpretation might consider weak model performances as a

clue to species traits and an early warning of a generalist’s

positive response to new habitats. Although this is demonstrated

by the poor performances of all the models tested with B. tectorum,

it is highlighted by the inability of the classification tree analysis

to produce any results. Overall results of our analyses of B. tectorum

further highlight the pervasive nature of the species and the

models’ inability to define any significant barriers to invasion

among the independent variables tested. Our results were

consistent with those from other studies on B. tectorum (Evan-

gelista et al., 2004; Waters et al., 2004), but a thorough review of

the literature examining different species and model responses

was inconclusive since poor model performances are rarely

published.

CONCLUSIONS

Although most of the models we tested generally performed

similarly with both species, there were some discrete differences

noted. The models tested each have unique analytical approaches

that may function better or worse with different species and data

sets (Segurando & Araújo, 2004; Pearson et al., 2007; Ward,

2007). For this reason, we recommend that users select several

models to test their data. The scientific literature offers numerous

model comparisons suggesting that some models are superior to

others. We do not discount the results of any individual study;

however, collectively they reveal that model performances can

exhibit different degrees of variability.

Our study also demonstrates the importance of model

functions and evaluations in interpreting results. We recommend

the selection of models that have built-in functions that evaluate

the performance of results (e.g. R2, AUC). Although model

evaluations can be conducted independently of models, they

require access to different software and a comprehensive

understanding of statistical methodology. Additionally, models

that measure the predictive contributions of the independent

variables (e.g. standardized regression coefficients, jackknife)

will provide users with valuable clues regarding environmental

conditions that may prohibit or facilitate species dispersal and

establishment. Maxent and classification tree models, for example,

provide user-friendly and comprehensive operations that quantify

the predictive strength of each independent variable tested. Users

should consider the results from all the available functions when

evaluating model performances or making predictions on a species’

potential distribution, while considering expert knowledge

whenever possible.

Because this study only examined two species, we cannot

conclude that model performance alone can be used to gauge

species traits or potential distribution risks of invasive species.

However, this study offers several insights into model performances

and their relations to species traits. Only a few studies on these

relationships have been conducted in any depth (Chong et al.,

2006; McPherson & Jetz, 2007), leaving a large gap in our

understanding of the effects that autecology has on predictive

modelling. Our results also demonstrate the need for further

studies that include a wide array of species (native and non-

native) that exhibit different traits and dispersal strategies.

Specifically, increased research may prove to be especially useful

in assessing the risk of new invasive species.
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